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Introduction

This book contains the proceedings of Bianisotropics’93, an international seminar on electrody-
namics of chiral and bianisotropic media. The seminar was held 12 - 14 October 1993, in the
city of Gomel, in the southeastern part of the republic of Belarus. The seminar was organised as
a continuation of Bi-isotropics’93, which was a workshop on novel microwave materials, held in
Espoo, Finland, in February 1993 (for the scientific contributions of Bi-isotropics’93, see No. 137
of this Report Series).

The venue, why Gomel? — Since 195(’s, the study of electromagnetics and optics of gyrotropic
and bianisotropic materials has been intense in Belarus, and in the former Soviet Union in
general. Academician F.I. Fedorov, his research groups, and his students have created a fertile
basis for research on electrodynamics of complex materials. No wonder therefore, that the Gomel
seminar attracted scientists and engineers in the international scale. The affiliations of the 30
participants of Bianisotropics’93 can be found in this report.

The seminar put a strong emphasis on the scattering from helical structures, which is a key
issue in the chiral and anisotropic electromagnetics research. This aspect can be also seen in the
reports of the Proceedings. The Proceedings reflects the Gomel seminar quite fully; only two of
the presentations given in Bianisotropics’93 are missing from this report (those of A. Serdyukov
and V. Shepelevich). On the other hand, the paper by V. Semenenko and D. Ryabov on page
116 has been included although it was not presented in Gomel.

While one of the objectives of the present Proceedings also is to promote contacts across the
former iron curtain, the phone, fax, and electronic mail codes are listed for the participants.
Through these means, the speed and efficiency of communications between the scientists in
East and West has increased (and is increasing) dramatically in the present times. Catch the

opportunity and contribute to the global warming! Technical and scientific interaction is to be
fostered.

Bianisotropics’93 has been supported by a few institutions. We acknowlegde the generous help
from

¢ Regional Council of Gomel

o Gomel State University

® VVV Company (Production-Commercial Company of Gomel. Automobiles, Computers, Soft-
ware. Phone/fax (7 0232) 579-700, 579-750, 573-793)

¢ The Electromagnetics Laboratory of Helsinki University of Technology

o IEEE (The Institute of Electrical and Electronics Engineers) MTT (Microwave Theory and Tech-
niques) Society within Region 8

And the continuation? Demand for seminars on complex media electromagnetics is great. The
next workshop will be held in France, in 16 — 20 May, 1994. The organising institution is
the French Atomic Energy Commission CEA-CESTA. For more information, please contact
F. Mariotte (see list of participants).

A.5., S.T., I.5.
Espoo, St. Petersburg, Gomel
November 1993
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Acousto-electron interaction in conducting crystals of ferroelectric ceramic in the condi-
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On general wave normal equation for bianisotropic media
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Similarities and differences
between bi-isotropic and anisotropic
electromagnetic quantities

Ari Sihvola

Helsinki University of Technology, Electromagnetics Laboratory
Otakaari 5 A, 02150 Espoo, Finland

ABSTRACT:~ To choose a well-balanced topic for a presentation in a work-
shop named Bianisotropics’93, this study focuses on the common elements
in the electromagnetic behavior of two distinct material classes: bi-isotropic
and anisotropic media. Bi-isotropic media are insensitive in their responses
to the direction of the field vectors, whereas anisotropic media do not react
electrically to magnetic excitation and vice versa. The polarizability matrix
elements of a small homogeneous sphere depends on the material parame-
ters, and this presentation studies the analogies between the polarizability
components of the two different material spheres.

The well-known [1] bi-isotropic constitutive relations between the electric (E, D)
and magnetic (H, B) vectors

D= B+ (x - ju)iee B &)
B = pH + (x + jx)\/ioto E (2)

are followed in the present analysis. If one wishes to consider the electromagnetical
reaction of a small inclusion of bi-isotropic material — characterized by the material
parameters € (permittivity), u (permeability), & (chirality), x (nonreciprocity), —
the electric and magnetic dipole moments 7., f,, need to be evaluated. The response

is contained in the polarizability components of the inclusion, which can be arranged

in a 2 X 2 matrix form:
Pe _ Xee Qe E:'
(5)=(e a)(7) @

In the polarizability symbols a;;, there are two indices: the first (7) denotes the
polarization type, and the second (j) is for the origin of the polarization.

The polarizabilities of a sphere with volume V = 47a3/3 are
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(€ = eo)(p + 2p0) — (X* + K7)ptoto
ee — 3 oV 4
O = eV O (e & 260) = (2 1 R)pos *)

3(x — j&)\/Hoto

(1 +2p0)(e + 2¢,) — (x* + K?)po€o

Aem = 3ﬂ'o€aV

v 3(x + JK)V/Hoto
(1 + 280 )(e + 26,) — (X? + K% poto

(6)

Ame = 3[‘050

(B — po)(€ + 26,) = (X* + K*)pots
(1 + 2p0)(€ + 2¢,) — (X7 + K?)poto

Qe = 3oV (7)

These polarizabilities are very essential in the modeling of bi-isotropic media.
For the nonchiral reciprocal limit x — 0, ¥ — 0, the polarizabilities simplify to the
well-known expressions:

€—¢
ee — 3 OV d 8
@ ¢ €+ 2¢, (8)
H = Ho
mm - 3 OV 9
a bV o (9)
Qe = Qo = 0 (10)

Note here the decoupling of the electric and magnetic quantities, compared with the
bi-1sotropic case.

Let us next take a look at the polarizability behavior of anisotropic small inclu-
sions. Bi-isotropy refered to isotropy in the sense that no direction in the space is
special, the macroscopic electromagnetic behavior of the material is independent of
spatial rotations. However, magnetoelectric coupling exists. In contrast, anisotropy
accounts only for electric polarization due to electric excitation? but the response is
sensitive to the vector directions.

Dielectric anisotropy means that the polarization caused by electric field is gen-
erally not in the same direction as the field itself. Correspondingly, in anisotropic
magnetic materials, the average magnetic dipole moment density is only in principal
axes directions parallel to the magnetic field. In bi-isotropic media, on the other
hand, there are no special axes, or directions. Therefore, it may seem strange that
so different polarization mechanisms as in these two different classes of materials,
there exist similar laws in the polarizability descriptions.

The constitutive relations of anisotropic media are formally simpler than bi-
isotropic ones. For dielectrically anisotropic media (for example magnetoplasma),
the permittivity is dyadic:

D=%E (11)

and for magnetically anisotropic media (for example, ferrites), permeability is dyadic:

B=%-H (12)

1Or, in the magnetically anisotropic case, magnetic polarization due to incident magnetic field.
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Let us consider an anisotropic sphere, with permittivity dyadic
E = ol + €)ilyily + €, 0, + €l X T (13)

This consists of a symmetric (biaxial) part and antisymmetric (gyrotropic) part.
The gyrotropy axis is here assumed to be aligned with one of the symmetry axes
4,. €y is the measure of gyrotropy. The gyrotropic character of the permeability
in ferrites can be exploited in nonreciprocal microwave applications, like circulators
and isolators, but also nonreciprocal permittivities are being studied for the use of
gyroelectric waveguides [2).

The polarizability dyadic of this sphere can be shown to be {3]
a= Z ;i ily (14)
i, j=z,z,y

with components

(e — €)(& + 2¢,) + ez
*" (e + 26, )(ey + 26,) + €5
(ey — €o)(€z + 26,) + e:
(€2 + 26€,)(€y + 2¢,) + e:

Qe = 3¢

ayy = 36,V

e (15)
e = T

— €6y
Qpy = —0Qyz = 36,V

(ez + 26,)(ey + 2¢,) + e:

Qe = Oz = Qu, = Ay = 0

There are striking similarities as one compares the gyrotropic polarizability com-
ponents of (15) to the polarizability matrix of a bi-isotropic sphere (4) — (7).

In (15) the gyrotropy parameter ¢, aflects the polarizability components. If it
vanishes, the matrix becomes diagonal and the components become simple functions
of the permittivities like in the perfect isotropic case. However, in the gyrotopic
case, there is one component that is not affected by ¢,. This is the z-directed
copolarizability a,, which is the same as isotropic. It means that, for example in
the case of a ferrite sphere, the gyrotropy has no effect on the copolarizability in the
external magnetic field direction.

On the other hand, gyrotropy affects the transversal components a.., and a,,
as also the off-diagonal components a,, and «,,. Here ¢, plays a similar role as
the chirality parameter x or nonreciprocity parameter y in the case of bi-isotropic
sphere. However, there is a change of sign: the denominator of the gyrotropic case
is

(€x + 26, )(€y + 2¢,) + e;

whereas the corresponding expression for the chiral (Pasteur) case is

(E + 260)(” + 2!"0) - K‘zl‘oeo
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and in the nonreciprocal (Tellegen) case

(6 + 250)(}1’ + 2}1-0) - sz'oeo

and in the general bi-isotropic case

(€+ 2e) (1 + 210) — (X* + K*)poto

These quantities, and also the polarizability expressions, have full correspondence
if the gyrotropy is imaginary: ¢, = jg where g is real. This is in fact the case in
magnetoplasma [4, 5] or in the case of the permeability of ferrites [6]:

T = oilyily + po(] — G,;) + jgii, x 1 (16)

The imaginary nature of the gyrotropy in the permittivity/permeability expression
completes the analogy with respect to bi-isotropic media. We can write the following
correspondence table:

Pasteur Tellegen Dielectrically Magnetically

medium  medium gyrotropic gyrotropic
K X Jég JHg

€ € €z He

H H €y Hy

aCC au a:cz a:z

Qmm o T, Qyy Qyy

QAem Qem Qzy QAzy

Qe —Qme ayz ayz

Due to this wonderful correspondence, all the conclusions and numerical results
that have been made for bi-isotropic media are valid (mutatis mutandis) for spheres
made of gyrotropically anisotropic material, regardless of the nature (be it of dielec-
tric or magnetic origin) of the gyrotropy.

PosSTSCRIPT

During the talk and in the discussion session of Gomel Workshop on the topic
of this paper, the issue about the meaning of the very term gyrotropy was raised.
It turned out that scientists understand this concept differently, even those within
the same country and research culture. Therefore also the use of the term is by no
means precise, especially as people from separate fields talk about these problems.

In the most vague sense, gyrotropy means any deviation from the simple isotropic
behaviour D = ¢E, B = pH. This approach would embrace all anisotropy and bi-
isotropy within the domain of gyrotropy. However, as the present paper attempts
to show, the aspects of nonisotropic phenomena in electric, magnetic, and magne-
toelectric media can be classified more concisely.
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“Gyrotropy” originates — again — from Greek; gyros meaning ‘ring’ or ‘round’
(yvpos). Hence the most natural meaning for gyrotropy is to affiliate it with those
media that are characterised by the property of rotating the polarisation plane of
the linearly polarised electromagnetic wave. Ferrites and magnetoplasma are there-
fore gyrotropic, and these materials also possess the permittivity (or permeability)
dyadic, which is a gyrotropic dyadic (i.e. the dyadic contains a component of & x ).

This is not the case for Pasteur media, which also rotate the polarisation plane,
but the material parameters are isotropic, and the parameter dyadics multiples
of the unit dyadic. Still, due to the rotation, chiral media deserve the label of
gyrotropy, although the medium is different (it is reciprocal and isotropic, instead
of nonreciprocal and anisotropic, like ferrites).

If we keep the criterium of rotation for gyrotropy, we have both reciprocal gy-
rotropy and nonreciprocal gyrotropy. But Tellegen medium is not gyrotropic, al-
though it is magnetoelectric. Also one can find examples of more complicated bian-
isotropic media which are not gyrotropic, although these contain magnetoelectric
coupling which is of a dyadic form, like so called special 2 media discussed in other
talks of the Gomel Workshop, and also in the present Proceedings.
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Microscopic properties of a chiral object

A.P. Vinogradov
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The most part of investigations concerning the propagation of electromagnetic
waves through inhomogeneous media deal with the cases when any scale of inho-
mogeneity @ is small in terms of both free space wavelength A, and wavelength ;.
inside any domain of the medium (ak <« 1), where k is a wavenumber. In this
case it is possible to consider the interaction of an electromagnetic wave with in-
clusions in steady state approximation (ak = 0) and successfully use some kind of
EMA theory [1,2]. Recently, the attention of scientists has been attracted to cases
when wavelength );,; may be comparable with some characteristic length a of in-
homogeneity [3, 4, 5]. In this case, one can not neglect the value of (ak) and has
to take into account retardation and nonpotential (vortex) character of fields. The
exact consideration implies introducing nonlocal constitutive equations (see [3, 6]).
Fortunately if (ak) < 1 in matrix material it is still reasonable to work with local
constitutive equations. It is the case of high conducting inclusions. Inside the in-
clusions (ak) > 1; flelds here are vortex, and currents flow only in thin skin layer.
Outside the inclusions the value of k& may be so small that (ak) < 1. To take into
account nonpotential feature of fields it is sufficient to use renormalized value of
conductivity and introduce an effective permeability due to eddy currents [2, 4, 5].
Both of these effects are of the second order in (ak).

Now we consider chirality that is an effect of the first order in (ak). We study
composite material containing wire helix inclusions. We confine ourselves to the
case when the external sizes of the wire helix: the length L of the helix, the wire
radius r,, and the helix radius r, are less than the wavelength in surrounding
medium. We hope that subject to (kL) < 1 it is possible to describe the system by
local constitutive equations with additional terms. Nevertheless, the effects may be
significant because the total length £ of the wire may be about A/2; and a resonance
may appear.

The absence of the center of symmetry in the helix yields the rotation of polariza-
tion of scattered fields [7]. Let us consider an electromagnetic wave that falls on the
helix along axis z with electric field polarized parallel to y-axis. The field causes the
movement of charges up and down the helix. The current flowing along y-axis will
emit y-polarized wave. There also exists z-component of the current which might
radiate z-polarized wave. Since in opposite parts of a helix turn the z-currents flow
in opposite directions the radiation of z-polarized wave is due to retardation (ka)
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of the electro-magnetic wave. Thus there appears z-component of electric field that
means rotation of polarization and this rotation is proportional to (ka).

Below we consider this effect quantitatively for a single helix inclusion. We
confine our consideration to calculating the magnitude of induced electric and mag-
netic moments as well as chiral factor of single inclusion keeping in mind that there
are many articles [8, 9] devoted to the problem of cooperative interaction of chiral
inclusions.

We shall deal with frequency domain representation. Complex notation is used
throughout the article with ¢*t time dependence assumed, and then suppressed.

If we deal with perfectly conducting thin wire we can neglect the angular currents
and consider the tangent components only. In this case it is more convenient to
deal with the whole current J and linear charge density p obtained by integration
current and charge densities over the cross section. We shall also use the following
approximation for Green function [10):

Glers) = { )

e il(2r =2, + (v =y (2 2,0 4L S }

[(2:,. - 1:,.1)2 + (y" - y")2 + (Zr e zr')z + 7124;]0‘5
where s is an arc length at the point r = {z.,¥,, 2. }.

For the tangent to the wire component of the electric field on the helix to vanish,
it is require that E'?*! = Einc L F* = 0, where E'™ and E! are tangent components
of the incident and sca.ttered electric field. Thls leads to the first order Fredholm
integral equation which is incorrect [11]. The approximation (1) will not lead us to
the correct solution unless special precautions are taken. The correct results may
be obtained in scheme proposed by Mei [12].

Using the aforementioned technique we numericaly solve the diffraction problem
and obtain the relationship

J($)li(s) = iw /L Aij(s,8")EF(s) ds' = wTiy(s) Eo; (2)

Following the scheme suggested by Born [7] it is possible to evaluate the electric
moment P, the magnetic moment M, and the chiral factor 3 for a single inclusion.

The value of the P we obtain using the law of charge conservation: iwp = —divj.

For thin wire we rewrite it in the form p = =1 4(

o and obtain:
iwrrd  ds

P = / ri(s)ps )(m)—

- L
TowV / - wVT’J o wV /L J(e)li(s)ds

Using zero boundary conditions for current we obtain electric moment per unit
volume:

1 4
Pi=< /L /L Aij(s, s)e Ml dsds' E? = ai EY (3)
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The effects considered here are beyond the scope of steady state approximation,
there is no reason to think that a;; = a;. Below we focus our attention on an
antisymmetrical part of the susceptibility tenser. At first, we give some speculations
favoring the following form of antisymmetrical part: af; = kmotijm.

Since we are interested in first-order effect in (ak) we can use the following
expansion of the incident field:

E(s) = Egje~"n=m) = B 1 B = By — i(kmnm) Bo; 4
that yields the corresponding modification of (2):

ijm

JD(8)l(s) = whkm ‘/L Ai;(8,8 )2 m(s')Eojds' = WT) ko Eo;

For antisymmetrical part of the susceptibility tenser we obtain:

aj; = // 51‘7[,4,-,-(3 s') — Aji(s, 8 (—ikmam)dsds’ =

ik [ [TS0(6) — Ti2n()] do = Kmaiim (5)

i

The zero-order term of af; is zero because it corresponds to the case of steady
state fields (ka = 0) and for this case permittivity tenser is symmetrical.

Following the common procedure [7] let us introduce a tenser g;;:
Goj =10y, = —i0,y; J=1,2,3; with cyclic transposition of {z,y,z}
and write P of the form P; = a:jE(';'J?C + ie;uB Ean where 3; = g1k

If we dealing with isotropic materials averaging over the angles produces g;; =

98;; with g = (g11 + g2z +g33)/3. Using B = gk the expression for P can be rewritten
as P, = al,Ey + igeijik; Eqi’. Using (5) one may obtain:

9ee = o7 [1TE(6) ~ TGL(o))ds (6)

It is worth noticing that T,(klz" = Jp Azmds = LI(s|E = fim,E = 1Tk /w), where
{#;} is a basis of the coordinate system. Thus to calculate g one needs solving (2)
for the following cases:

k={k,0,0};E = {0,ic/w,0} k= {0,k,0};E = {0,0,iy/w}
k={0,0,k}; E = {iz/w,0,0} k= {k,0,0}; E = {0,0,iz/w}
k={0,k,0}E = {iy/w,0,0}  k=1{0,0,k};E = {0,iz/w,0}

The results of the calculations are presented in Figure 1.

To evaluate the magnetic moment M we present the current j;(s ) = J(s)li(s)
as a sum of an average part (j;) and a fluctuated one: j= ( ) + 85. The first
part (j;) determines the symmetrical part of P. It is reasonable to connect the
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Figure 1: Chiral factor for the helix with radius ry = 0.03 cm, the length of the wire
L = 1.5 cm, the helix step A = 0.03 cm.

fluctuating part with magnetic moment M in a standard manner 6; = ¢ curlM. The
consequence of the relationship is a reversal one M = T fL[r(—.;) x 87). Opposite
to the consideration of [7] so defined quantity is independent of the position of the
coordinate origin. Introducing zCs) = 'r(-:s) — (), where {7} is the position of the
center of the helix, it is possible to write

M;

8¢ Vetkl rebiids = e Ve.kt ({re) + ze) (Gt — (21))ds =

= 2 Ve,kz [/ zrjids + (e /;jlds —{re}(Gi) — (jl)/;:ckds] =

= 5 Ve:kl zefids
were j is the whole current and = is a position of the point s in accordance with the
center of the helix. To confine to the first order in (ak) it is sufficient to take into
account E(®"¢ only. Using (2) we can rewrite the expression for M

w , k . a
M,- = 5;——‘76,'“ ./L./; :ckA,-j(s,s )ondsds, = 5 (e,-u,a,j,kon + 6,‘[}¢alj’kon)

The first term contributes to permeability and describes the magnetic moment
appearing due to eddy currents, the second one is responsible for chirality and may
be rewritten as 0.5(gEo; — gi;Fo;). For bi-isotropic system we have M = igkEy =
—iglk x [f x Eo]] = —t[8 x Hy).

Thus the antisymmetrical parts of P and M are discribed by the same coupling
constant g. It is well to bear in mind that we have restricted ourself by microscopic
consideration and that electric £ and magnetic H fields are the microscopic fields
need averaging.
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BACKSCATTERING OF THE THIN WIRE HELIX : ANALYTICAL MODEL,
NUMERICAL STUDY AND FREE SPACE MEASUREMENTS.
APPLICATION TO CHIRAL COMPOSITE MODELLING.

F. Mariotte, D. Gogny, A. Bourgeade and F. Farail

CEA-CESTA
BP No 2
33114 Le Barp. France.

I - Introduction

In the last 10 years. there has been an increasing interest in electromagnetic
chirality. In particular, the interaction of an isotropic chiral material with
electromagnetic waves. The chiral media can have various shapes, as slabs.
cylinders or spheres [1-3]. In previous studies [4-6], it has been shown that a
chiral inclusion can be expressed in terms of electric and magnetic dipole moments.
The electromagnetic properties of the inclusions (in those cases helices) was
calculated in the quasi-stationary approximation. when the microstructure size is
small as compared to the wavelength. In this paper we study the electromagnetic
properties of the thin wire helix without restrictions of its size compared to the
wavelength : an original Integral Equation Method is used to solve analytically the

“problem. numerical calculations are also performed.

Il - Integral Equation Method : an Analvtical Model

Our purpose was to calculate the current as induced by an EM wave
illuminating a thin wire helix perfectly conducting (figure 1) {7-8]. In order to

calculate the current we start with the integral equation as provided by :

, 1
E(r=ro=E_(r=r)-joA - J;;V(v.m ()

where E;ot(r = rg) is the tangential component of the total electric field at the
surface of the helix, E:nc(r = 1) the tangential component of the incident electric
field and A the potential vector given by

L xpt-ipR)
A(r):‘L—Je——XP éﬁ Jo(r') dr (2)
4r



where Js(r') is the curent density induced a the surface of the helix. = o \’8}1 and

R =irr'.

2a

2R
P

figure | : the thin wire helix.

The wire is thin and consequently we are tempted to make the filament
approximation : the currents J¢(r') are concentrated on the axis of the fitament and

we take the boundary conditions E:o((r =1s) =0 at the surface of the helix whose

radius is "a". So we have three integral equations to solve, one for each wire
(linear part) and one on the loop. Using cylindrical coordinates (ep.eg.ez) for
currents on the linear portions. we show [7] that the current densities Jg et Jp on the
straight portions are negligible as compared to J,. For the circular loop, which
indeed is a torus of radius "R" and cross-section ma>, we define axis tangential to
the torus (ep1.e91.eq), we also show that the current densities Jy; et Jp1 on the
loop are negligible as compared to J¢. Using similar methods developped by Hallen
and Einarsson {9] we solve the integral equations on the linear parts. For the
circular loop. we expand the integral equation in fonction of a/R (<<i). By
imposing the boundary conditions, zero value for the currents at each end of linear
portions and current continuity between wires and loop. we obtain the value of the
current along the helix.

By integrating the currents on the thin wire helix. the scattering field in the
far zone is calculated. The equivalent electric and magnetic dipole moments p et m
are aiso provided by the current distribution on the wire helix: in the low frequency
approximation we provide new simple analytical expressions for p et m.

Representative results are presented.

II1 - Numerical Calculations

Two numerical codes are used in this study. The first one, named "Ficelle",
solve numerically the integral equation at the surface of the helix with the thin wire

approximation. The second one "Arlene” is a surface integral equation code.
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Current distributions and backscattering of several chiral objects are presented for
different polarizations and incidencesof the incident EM wave. Results from

different numerical codes are compared and discussed.

IV - Comparaison between Modelling and Measurements

Free space measurements are processed on a thin wire helix in CESTA
anechoic chamber. The results are provided in the frequency range of 1.7 GHz -
20 GHz. Generally speaking, the agreement between the theoritical and measured
values is quiet good. An example is presented in figure 2, however a light
difference occure at resonance. In this talk, the comparaison of results is discussed

and physical insights into these resuits are provided.

-0k E} TEMwave
: Lo~

RCS (dB.m2)

i ~ = - Code Ficelle
'90“' —— Measurements
-100 —

9 5 i0 15 20

Frequeacy (GHz)

figure 2 : theoritical and measured backscattering of a thin wire helix.

V_- Modeling chiral composites

In order to sastify the concept of effective medium. it has been supposed the
helix size was small compared to the wavelength in the material. In this case. an
isotropic lossy chiral composite consisting of chiral objects can be represented by

the following constitutive relations

D=¢E+icB and H=itE + Blu, (3)



Lem it

where £, = £,(€' + 1€"). U, = Ui’ + in") and & = & + 1E¢ represent compiex
permittivity and permeability, and chirality admittance. In this taik. we give the
relationships between g i £. and the dimensions of the helix.

For tow frequency, the analytical model (see I} provide analytical
expressions for p and m. By average over helices orientation angles, we finally
find P and M for a collection of N non-interacting helices randomly oriented in an
host medium. So we can define €., u.. & of the effective chiral medium.

Modelling and measurements of a chiral composite are presented.

VI - Conclusions

In this talk, we present an overview of Microwave Chirality Research at
CEA-CESTA : First, modelling of heterogeneous chiral materials by analytical and
numerical calculations of electromagnetic scattering of a chiral element (thin helix).
secondly free space measurements of chiral scatterer and third the modelling of

chiral composites.
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Artificial magnetics based on circular film elements

Mikhall V. Kostin, Viktor V. Shevchenko
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Mokhovaya str.11, Moscow 103907, Russia

Artificial spatial structures in an electromagnetic field,
whose wavelength exceeds substantially the dimensions of the
elements and distances between them, manifest properties
characteristic of dielectric and magnetic media. Such structu-
ral media are created and studied with the aim of obtaining
electromagnetic materials possessing new properties of which
natural dielectrics and magnetics are devoid.

An artificial magnetic structural medium based on united
four cubioc lattices of ring - shaped conducting elements are
studied theoretically in [1, 2]. The conducting elements are
considered of nonmagnetic metals. The magnetic properties of
that kind medium have diamagnetic character, and its magnetic
losses are great, but are not resonant, that was confirmed by
experiments [3]. The sufficiently complete theory of this arti-
ficial magnetic medium and additional experimental results are
given in [4]. The theory based on stationary circular currents,
forming magnetic dipole moments, and on the phenomenological
Lorentz — Lorenz formula.

In the present paper some additional results on the medium
of circular nonresonant currents {4] and some results on a new
medium of broken circular resonant currents are given. Unlike
the first medium, which can be as diamagnetic only, the second
medium can be as diamagnetic, so paramagnetic. The
paramagnetism is a result of the resonant dependence of a ocur-
rent in the broken ring - shaped elements. If an equivalent
electric circuit of the element of the first medium contains an
inductance and a resistance only, an equivalent eleciric
circuit of the element of the second medium contains a capacity
in addition to the inductance and resistance. The capacitor is
formed by parallel surfaces in the broken part of the ring -
shaped elements.
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If axes of the circular elements are parallel, the medium
is anisotropic and it has diagonal tensor of permeability with

components W = uy =1, b= M = U - U where acocording to
‘4, 5]
X
H, = ————— (1)
1 - %/3
1/(R + lwl) for 1 - st medium,
¥ = -7({wl) (@)

1/[R + {(wL -1/wC)] for 2 - d medium,

w is the angular frequency; R = 2%b/(hdo) is the ring - shaped
?ilm strip resistance (h « d « b, b is the ring radius), 0 is
the specific conduectivity; L = LO + N, LO = uob(ln 8b/d - 1/2)
and ¥ = uobf(zb/l)/4w are the internal and mutual inductances
of elements, the function f(2b/1) is tabulated in °[4,-6], 1
is the lattice period; C = SOS/hO is the capacity 7 = WzbsN/q,
¥ - is the elements concentration (a number of elements in a
cubic meter), q = L/uob; uo and €° are the vacuum parameters,

0€7<1, ¥~ 1 is corresponding to the concentration limit.
The function U”(w) has a maximum for w = mu, where
a R/L for 1 - st medium,

W, = a

v
w, (B2 + 3)778- p1"/% for 2 - d medium,

R ARG e 28

(4)

Wo= 1%531/2 » 4= %[_EFJE'

Unlike of the first medium [1, 2, 4] for the second medium
the function U’ (w) has a maximum for W = W e Where

W = moa(1 + a/Q)—1/2, (5)

N

and, if a/@ < 1, a minimum for w = W where

_ -1/2 (6)
W oin T woa(1 - a/Q) .
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It is interesting to consider some asymptotical ocases.
1. If£ Q - 0, we have from (3) - (6)

-1 ,

wu - (1 +79/3) KL, 0 =05 Mo 0" 1. (7)
Thus the medium is diamagnetic.
2. If Q - », we have from (3) - (6)

w0, w, (1 + 7/3) v Qi Cnag T Y

Thus the medium has properties, which are typical for media
with an anomalous dispersion [7].
3. I Q@ ~ 1, the medium has properties as diamagnetic, so para-
magnetic.

In conclusion it should be note, that the use of Lorentz -
Lorenz formula is valid, if [Y| <1 (8].
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1. A new chiral composite material with direcied mulilgone
spirals has been proposed, manufactured and experimentally in-
estigated In microwave dlapason.

2. The dleleciric permittivity and magneilc microwave Der-
meability of the medium mentioned above have been measured by
the resonator method.

.Peculiarities of the dieleciric permittivity and magnetl
permeabl lity behaviour depending cn the twirl angle have been
studled in centimetier range.

<

For measurements based on the resonator method and on the
with perturbation theory the samples of the mentloned above
medium were manufactured in form of hollow cylinder with 1a
ral walls from directed isolated multigone spiral twisis (
turns ) placed between two dleleciric fiims (see Figure 1)
cyiinder dlameter was 2.3 mm, length 1 was of order of 2

e wire diameter was O.G15 1 T
S 1 pitch (& ctgx),where a=8 mm. o 1is the spiral
irl angie.The turns concenirat

twi ion was of 40 turns per centi-
meter and corresponded to the metal volume fraction of 0.2 %.
The samples under invesiigation sll had the same dlameter
and differed from each other by the value of o and by the spi-
%

ral pltch and length, consequently

The half - wave rectangular resonatnrs and panoramlc stan-
ding wave ratio(SWR) for the 3 - 5 GHz Irequency range were
sed [1,21. The electric and magnetic microwave flelds orienta-
tions were elther perpendicular or parallel to the cylinder
X (=]

axis z .In Figure 2, a iypical measu_.d. dependence of the
refiection coefficient R on the frequency I Is presented.It

demonstrates the effect scale. A1l of reported below dependen-
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11. First the microwave paramagnetlc effect (difference of ihe
e >

magnetic permeability p' from 1, u'-1>»>0) is discovered by di-
rect measurements in artificial composites with oul magnetle
components.

111. The gigantic magnetic losses Induced by mlcrowav

chiral composites were discovered._ these

exceed thet In fraditional composites magnetiu type ha-
ving the same metal volume ITaciion in two orders. In
composites based on the lron balis w concentration of
5.2% w'= 1 and u”< 0.005
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Optimal Polarisations of a General Biisotropic Half-Space

L R Arnaut and L E Davis

Department of Electrical Engineering and Electronics
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UK

ABSTRACT - The optimal polarisations of a general biisotropic half-space are calculated.
The concept of optimal polarisation base is introduced to enable the optimal polarisations

to be calculated from the eigenvalues of the power scattering matrix.

1 Introduction

In studying the effects of general biisotropic (BI) media on the polarisation characteristics
of an incident wave, the classical approach is to start from a given polarisation description
of the incident wave together with given constitutive parameters of the Bl medium. The
reflected or transmitted wave is then analysed. In polarimetric radar applications, RCS,
as well as in certain problems of remote sensing, the inverse problem is often of greater
importance: given a medium with arbitrary medium parameters, find the incident wave
polarisation(s) that give(s) rise to certain received polarisation and/or power characteris-
tics of interest. This is basically an estimation problem. The solutions for the incident
waves that give rise to certain special cases of received wave polarisations are usually
referred to as optimal polarisations [1].

Assuming a zero surface current density at the single interface, the reflection matrix for

LP plane waves normally incident is defined from [2]:-

B\ _ o) [ B N
E ™1 T Ex
with
7217 — 7,2
P .1 L4R 1
=T (707 (Zat 2 2
. Z1(Zr — Z1)
ol — 1 R L
T = —To1 ](ZL+Z1)(ZR+Z1> (3)
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where Z; represents the wave impedance of the medium of incidence. This result has been

verified independently. It follows that co-polarisation nulls are found for Z; = /7 Zg,

whereas cross-polarisation nulls occur only if Zg = Zr. It is noted that ’co’ and ’cross’

refer to the directions parallel and perpendicular to the polarisation direction of an LP

incident wave, respectively.

2 Optimal Polarisations for a BI Half-Space

2.1 Optimal Polarisations

For any given scattering geometry for a given scatterer, a set of polarisations of the

incident wave, called optimal polarisations [1], exists for which:-

o the received power is maximum (maz polarisations);

o the received power is zero (co-pol null polarisations);

o the reflected wave shows no depolarisation (cross-pol null polarisations).

The received power is defined as that obtained from the algebraic sum of the reflected fields

(voltages) measured at both orthogonal output terminals of the receiving two-channel

polarimetric antenna.

2.2 Optimal Polarisation Base

Strictly, the optimal polarisations can only be calculated for a complex symmetric reflec-

tion matrix [3]. To make the theory applicable to reciprocal and nonreciprocal Bl media,

we choose the polarisation base to be optimal, ie such that the associated reflection matrix

is complex symmetric. It follows from analysis that, for example, a CP polarisation base

is a suitable optimal polarisation base B°, for which the CP reflected field components

E}, E7 and incident field components Ef, Ei are related as:-

ET E:
I (4)
E}, E}
with
R — ETRRA) _ riy — 77 0 (5
= o o - 0 ! - 1 )
T T2 1 F I

43



being the transformation of the reflection matrix in Eqn (1) to the CP optimal polarisatio:.

base. At normal incidence we have, with the aid of Eqns (2-3):-

(202 - 2:%) + 21 (Zr - 2

N TR T 2) (2t 2 e
o (ZLZR—Z12) —Z1 (ZR"‘ZL) (_
Tog = i
2 (Zr+ 21) (21 + Zh)

2.3 Polarisations for Maximum Received Power

The polarisations for maximum received power are the eigenvectors associated with the
greatest of the eigenvalues );? of the the power scattering matrix (B°)' R°, where (R°)
denotes the hermitian adjoint of R°.

The two eigenvalues are found as \;? = |r%|* (¢ = 1, 2), hence the polarisation for

maximum received power is one of the CP eigenpolarisations of the BI medium:-

ul——1~ ! or ul——l— ! (8)
.—1_\/2- —j ’ —2_\/’2— ] J

It can be shown that the other CP eigenmode gives rise to a local extremnum for the

received power only and that the minimum received power is zero.

2.4 Polarisations for Zero Co-Polarisation

The co-pol nulls are formally defined as the polarisation vector solutions v° of B v =
a(2°)], where (v°)] denotes the vector which is hermitian orthogonal to v° and « is a

scalar to be determined. After substituting Eqn (5), the normalised solutions are found

j.Mi jb
vi=a Ai"l ; vh=o Ai“ (9)

_ \Z(Zr—-Z1) - (Z02Zr ~ Z,%)
N\ 2 (Zr - Zr)+ (ZLZR - sz)

as:i-

with

(10)

ex ex
_ P _ P (11)
/ M1 / M-
M 1 +1 M+i +1
In the special case of a reciprocal Bl, ie a uniimpedant (Zg = Z;), half-space the co-pol

nulls are characterised by M = +1, hence the co-pol nulls are two hermitian orthogonal,

linear polarisations.
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2.5 DPolarisations for Zero Cross-Polarisation

The cross-polarisation nulls are determined with the aid of the eigenvectors (polarisation

vectors) for maximum received power as:-

uj (12)

o __ -1 © . o __ -1
Q1——g K Mz—g

with

10
uy | = 13)
D (

Q=(y‘{

Hence, for a BI half-space, these coincide with the optimal polarisations for maximum

received power, ie the RCP and LCP eigenpolarisations of the BI medium:-

1 1 1 (1
wh=— ;owh=—= (14)

V2 —j AW
3 Conclusion

The optimal polarisations of a general biisotropic halfspace for use in monostatic polari-
metric radar have been determined. It was proven that both CP polarisations give rise to
zero cross-polarisation and that one of these gives rise to maximum received power. The
polarisations for zero co-pol polarisation are in general EP. Their co-polarised components

in a LP polarisation base are found to be mutually reciprocal-opposite.
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Plane electromagnetic waves in uniaxial
bianisotropic media

Sergei A. Tretyakov and Alexander A. Sochava
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29, 195251 St. Petersburg, Russia

Electromagnetic waves in novel materials which have properties of chiral com-
posites and omega structures are considered. The materials can be modelled
by uniaxial bianisotropic constitutive relations. Both chiral and omega com-
posites possess features promising for applications, and one may expect still
more interesting effects in more general media.

INTRODUCTION

Electromagnetics of complex media attracts a lot of attention and efforts of re-
searches. Among those novel microwave materials, isotropic chiral composites were
intensively studied in the last decade. They proved to be useful in microwave tech-
nology, antenna design and, especially, as prospective materials for anti-reflection
coverings. A novel concept of omega media with 2-shaped metal elements embedded
in a dielectric matrix was recently introduced in [1]. These bianisotropic materials
can find novel applications in microwave engineering {1, 2]. A uniaxial modification
of omega composites was proposed in {3]. The uniaxial symmetry and additional
interaction between orthogonal electric and magnetic fields make the materials po-
tentially useful for non-reflecting coverings and antenna radomes [3]. Some other
special cases of uniaxial bianisotropic media were considered in [4]-[7].

Here we study electromagnetic waves in the most general reciprocal uniaxial
materials. In practice, such media with arbitrary linear magneto-electric interaction
can be realized as microstructures with both types of inclusions — helices and -
particles [6]. Another way is to arrange short metal helices in a certain order instead
of choosing a random distribution. Such a composite is chiral, but the field coupling
due to chirality is effective only for the fields in the (z — y) plane. Corresponding
material equations become uniaxial with the most general uniaxial dyadic coupling
terms: _ _

D =%-FE + jy/eopo (—kels — £,Z0Z0 + KJ ) - H.

B=7-H+ j\/eoto (k:eI: + knZoZo + KJ ) - E. (1)
In reciprocal media, the dielectric permittivity € and the magnetic permeability &
are symmetric uniaxial dyadics

E=coledi + €Zo%0), B = polpels + taZoZo), (2)
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Here, Z, stands for the unit vector along the geometrical axis, i = ToTo + Yoy 1s
the transverse unit dyadic, and J = Zo x I, = J,To — ZoT, is the 90 degree rotator
in the (z — y) plane.

PLANE WAVE SOLUTIONS

Because of the uniaxial symmetry it appears natural to split the fields into normal
and transverse parts with respect to the axis z: £ = E,zy+E;, H = H,7,+H,. To
study plane waves, we Fourier transform the Maxwell equations in the transverse
plane (z — y) and eliminate the longitudinal field components. This approach is
most convenient in view of potential applications of the uniaxial materials, when
layered structures are formed so that the axis is normal to the interfaces.

Substituting a plane wave solution in the form exp(—j3z) and solving the eigen-
value equation leads to the following expression for the normal component of the
propagation factor:

B: 1 k2
22 = qp, +xE— K2 (nmn — s(€pn + enue)> —5 +VD, (3)
k3 2 nk?

where

y 2y 2, Kt k{ k]
t
D= 4n2k3(€zﬂn — €apis)” + Ky nbin 3k k2 <2nt + nnnkg) (€chn + €npie)

2 k; R\
—4K*k, (ng + nnn—kg) + €cfit <2~t + nnn—kg) )
n = €nftn — 2 and k, is the transverse propagation factor. The last formula is in
agreement with the corresponding equations for some special cases known from the
literature [3]-[7]. It has been also checked against a solution obtained by a different
approach by Viitanen and Koivisto!.

As is seen, the analysis of general uniaxial media is rather involved. In non-chiral
omega media, eigenwaves are linearly polarized TM- and T E-waves [3], whereas in
isotropic chiral media eigenwaves are circularly polarized. In uniaxial chiral omega
structures eigenwaves, in general, have elliptical polarization patterns.

VECTOR TRANSMISSION-LINE PARAMETERS. REFLECTION AND TRANSMISSION

Next we study plane-wave reflection and transmission phenomena in planar uni-
axial bianisotropic layers. Such problems for complex media layers can be effectively
treated using the vector transmission-line theory, introduced for biisotropic mate-
tials in [8]. In that theory, a plane layer of composite material is modelled by an
equivalent transmission line with dyadic wave impedances and dyadic propagation
factors. In general, the modelling line is non-symmetric, i.e. its wave impedances
depend on the direction of the wave propagation. For non-reciprocal media, the
same is true for the propagation dyadics as well. In the present case, the medium

!Private communication, October 1993
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is reciprocal, and the general plane-wave solution to the Maxwell equations can be
written as a sum of two waves travelling in the opposite directions of the z-axis:

E,=e " . 445 B, (4)

where the two-dimensional constant vectors A and B are determined by the bound-
ary conditions. The exponent functions of the two-dimensional dyadic propagation
<=

=
factors B and S are understood in terms of their Taylor expansions.

Dyadic wave impedances (or admittances) determine relations between the trans-
verse electric and magnetic field components in plane waves propagating in un-
bounded medium. For an eigenwave we can write

=-1

Eg=:]:?i'ZQXFt —E()X_H_t::t?i'ﬁt ?:h:?i (5)

where the upper and the lower signs correspond to the waves propagating in the
positive and negative directions of the axis z, respectively. Dyadic impedances and
admittances can be found from the Fourier transformed Maxwell equations after
substitution the propagation factors (3).

In general, the eigenwaves are different for the waves travelling in the opposite
directions of the z-axis. We therefore are forced to introduce notations like E’u and
Egt for the transverse eigenfields propagating in the positive direction, and Eu and
En for the reflected waves. Since the two eigenwaves possess different propagation

factors 3; and B;, the propagator should act at a sum of two eigenfields Eu and EZt
as

e~IP=. (Eu + EZt) = ¢~ihz Eu +e73P22 E’zt (6)
For the opposite propagation direction,
Pz (Ewt + Ea2t) = b1z Ev +eP% By, (7N

The propagator dyadic in (6) can be explicitly written as the sum of two dyads:

> . - . [N
6—132 — e—.‘lﬂlz EltEn +e—.1322 EZtht (8)
and
.Ez Bz 5 —r B2z T !
e’ = * EnEy, +€77 By, - (9)

where the two-dimensional vectors Elw F;t form a basis reciprocal to the basis

(Flta FZt)-

With the determined equivalent parameters of the vector transmission line, the
reflection and transmission dyadics can be expressed in a way similar to that known
from the conventional transmission-line theory, but with dyadic parameters. For
details we refer to [8]. Some numerical examples demonstrate characteristic features
of plane waves in uniaxial bianisotropic materials.
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CONCLUSION

In this paper, the theory of electromagnetic wave propagation in the most gen-
eral reciprocal uniaxial medium was constructed. Using the vector transmission-line
theory, reflection and transmission coefficients for plane layers were analysed. The
novel composites are expected to have rather interesting properties, since their ma-
terial equations are still more general than that of isotropic chiral materials and
uniaxial -omega structures. As it is known, both special cases can offer important
potential applications.
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ABSTRACT

Several sets of constitutive relations may be used for describing the interaction of a time-
harmonic electromagnetic wave with a reciprocal bi-isotropic, or chiral, medium. However,
the permittivity, permeability, and chirality coefficient of such a medium carry different
meanings when they are expressed using different formalisms. This has an impact on energy
dissipation requirements in a passive chiral medium. The influence of the chirality parameter
on the reflectivity of a Dallenbach-type chiral absorber is also relative to the chosen set of
constitutive equations.

1. EXAMPLES OF CONSTITUTIVE RELATIONS AND CONNECTIONS
BETWEEN THE DIFFERENT SETS

From an electromagnetics viewpoint, an homogeneous chiral material can be described by
specific equations incorporating 3 macroscopic constitutive parameters. One possibility is [1]

Formalism 1: B = -ivE+ 1 H o

The D and H fields can also be expressed as a function of E and B in a covariant form [2]

D =gE+iEB
Formalism 2 : 2 ? )
H= 1§E+ —LI_B
2

A third possibility, putting emphasis on the non-local character of the medium 15 [3]

. D = &5(E + BVXE)
Formalism 3 : (3)
B = uy(H + BVxH)

Other expressions exist, but in order to avoid possible confusion, we will restrict the
discussion to the 3 expressions mentioned above.

These 3 sets can be shown to be equivalent for time-harmonic fields and connecting
equations can be derived [1]. Using an e-i9t time dependence, one obtains with our notations

)
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£3 H3 y= €330

&= 2 ,’?p’l = 2 4 - 2 4
1 -e3u3f " 0° 1 -g3H3B " 1-e3u3f 0" )
o] o)
Y Y Y ]
=gl -—— U3 = 1- LB =
? ‘( slm) "3 “1( slul) P= e, i
€11
and
€ =€3, s = B &= e
1- 2
esplsf o . ©)
- M2 _5
€3=8, 3 = éz’B_(ﬁEz
1 +u2g

As far as the chirality parameters are concerned, it is apparent from the examination of
equations (4) to (6) that their meaning depends on the formalism; some of them do not solely
represent the handedness of the medium, but also contain some information relative to the
dielectric and/or magnetic character of the medium. The meaning of the permeability and the
permittivity is also relative to the formalism in the general case. As for specific cases, it can be
seen that in formalisms 2 and 3 the permittivities are equal, while in formalisms 1 and 2 the
permeabilities are equal. For the particular case of low chirality, particularly important from an

experimental viewpoint [4], and quantified by the relations e511,B%w2<<1, n,E%/e,<<1, or

/e,y <<1, it is worth noting that there is only little difference between the permittivities and
permeabilities in the various formalisms.

In addition, the intrinsic wave impedance can be computed using each formalism
separately, which yields 1, = (1/6))1/2, 1, = (Uy/(8,+ H,E2)172, and 15 = (Us/e5)V/2. Using
the connecting equations (4) to (6), it follows that ; = M, = M3, i.e. the impedances are

formalism-independent. Since the wavenumbers of the two canonical right- and left-circularly
polarized (LCP and RCP) waves propagating in a chiral medium, k_ and k, do not depend on

the choice of particular constitutive equations, it is always possible to define a set of three
complex scalars which are formalism-independent, i.e. k_, k, and the wave impedance.

2. PASSIVITY REQUIREMENTS FOR CHIRAL MEDIA

Requiring that the net time-average power flux entering a closed surface S with interior
volume V in a chiral medium without sources be positive, the requirement on the constitutive
parameters of a passive chiral medium can be found (by passive medium, it is meant a medium
that is passive for all fields). After some manipulations, one obtains for formalism 1

Im(sl) >0 N Im(p;) 20

. @)
Im(e)Im(y;) 2 (Im(Y) )

This set of inequalities agrees with that given by Lindell [5]. If there is no chirality (y = 0),

then the results known for regular dielectric and magnetic media, Im(g;) 2 0 and Im(p;) 2 0,
are retrieved. Using the connecting equations and (7), one gets for formalisms 2 and 3
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Im(es + 12 )20, Im(ia) 2 0

il i (8)
Im(e; + Mo E)Im(p) 2 {Im(Ep)f
and
Im(—&——) >0, 1m(—”—32—) >0
1- 83}135”(1)2 1- €3H35 o? 9)
1-easf e’ 1-espsf e’ 1-e3p3p 0’

It should be noticed that only £, and [, have the same meaning in terms of dissipation of

energy as have the permittivity and the permeability in ordinary isotropic dielectric and
magnetic materials. Also, only in formalism 1 is chirality totally uncoupled from other

properties. In formalism 2, only i, has the same meaning as the usual magnetic permeability.

In formalism 3, neither €5 nor 5 can be considered as regular permittivity and permeability.

Therefore, as least regarding energy dissipation is concerned, one may regard formalism 1 as
the best suited to the description of reciprocal biisotropic media.

3. NORMAL INCIDENCE REFLECTION COEFFICIENT OF CHIRAL
MEDIA

In this section, we consider a metal-backed chiral slab of thickness e, on which a
normally incident linearly polarized plane wave is impinging. Our goal is to check if and how
chirality could be useful for applications related to microwave reflection reduction. Using the
generic symbol 1 for the intrinsic wave impedance, one obtains the following expression for
the reflection coefficient

N0 e
+ WVE
R=TEM =Rtk - o = oV e + o) = — 22 (10)
1-07M0  gikge 1 - e3p300%P
n+MNo

The reflection coefficient is written as a function of 2 formalism-independent variables: the
impedance M and an equivalent wavenumber k.4, which is the average of the 2 canonical LCP

and RCP wavenumbers; its formalism-independent character clearly appears when written in
this fashion.

Reminding the results of section 1 and considering the expression of k., in (10) using

formalism 1, it can be seen that the chirality coefficient y appears neither in the impedance, nor
in the equivalent wavenumber. Extending the analysis to formalism 2, it is found that the

chirality parameter & both appears in the expressions of the impedance and the equivalent
wavenumber. As for formalism 3, because T3 does not depend on [, it can be seen that the

chirality parameter f3 appears in R only through the equivalent wavenumber k.

Thus, for formalism 2, macroscopic chirality is present in the definitions of both the
impedance and the equivalent wavenumber. For formalism 3, it appears only in the expression
of the equivalent wavenumber. For formalism 1, the macroscopic chirality does appear neither
in the expression of the impedance, nor in that of the equivalent wavenumber, and thus is not
included at all in the expression of the reflection coefficient. Moreover, formalism 1 is the one
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in which the permittivity and the permeability have the same meaning regarding the dissipation
of energy as they have in ordinary dielectric and magnetic materials. At first sight, such a
conclusion does not augur well of the superiority of biisotropic media as microwave
suppressors over more conventional materials. This comment should nevertheless be qualified
by mentioning that only normal incidence on reciprocal bi-isotropic media was considered,
and that the general case of oblique incidence on a nonreciprocal bi-isotropic medium is still to
be studied in details, not to mention the case of bi-anisotropic media.

Another comment should also be made. Only homogeneous media were dealt with so far
in this article. However, in a composite containing chiral inclusions in an otherwise nonchiral
matrix, the situation is different. In particular, because of the electromagnetic coupling
originating from the shape of the inclusions, the macroscopic effective permittivity and the
permeability will depend on both the microscopic electric and magnetic polarizabilities, as well
as on the microscopic chiral polarizability of the inclusions. Thus, microscopic chirality may
play a role at a macroscopic level, and inhomogeneous chiral media may yield interesting
combinations of permittivity and permeability. Besides, if properly understood and controlled,
other phenomena such as scattering or multiple scattering may be used to enhance global
energy absorption. In any case, it turns out increasingly clear that chiral materials should
present some inhomogeneous character if they are to be considered as serious candidates for
reflection reduction.

CONCLUSION

3 formalisms applicable to homogeneous chiral media were compared for time-harmonic
dependence, and the relationships between the constitutive parameters expressed using the
different sets of constitutive equations were recalled. The requirements for dissipation in a
passive chiral medium were derived in each formalism. The reflection coefficient dependence
with respect to macroscopic chirality was found to differ from one formalism to another
because of the formalism-dependent meaning of the constitutive parameters. It appears that the
inhomogeneous character may be important for applications involving the absorption of
microwave energy in chiral coatings.
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I - INTRODUCTION

The composite chiral media we are working on are made of metallic helices embedded
randomly in a host dielectric medium. In order to maximize the chiral effects, two
conditions are both to be satisfied :

- helices have to be exciled by the incident wave;
- the interaction between helices and the incident wave has to induce a
non negligeable chirality.

We present here the optimization of the design of a single turn helix with respect to the
incident wave characteristics (direction and polarization). The helix is defined by its
dimensions (see figure 1, p : pitch, d : diameter and 1 : wirelength).
We shall call "tight helices” those with a p/d ratio smaller than 1, and "lax helices”
those with p/d greater than 1. The reference helix has a p/d ratio equal to 1. (figure 2)
I - EXCITATION EFFICIENCY

In order to analyze the efficiency of the helix, we shall consider the four following
basic excitations, where k; is the wave vector (figure 3} :

-k; along the helix axis (/Axis);
‘—ﬁi perpendicular to the helix axis (LAxis).

In each case for k;, we have two possible directions for 'ffi.

This efficiency will be evaluated by computing the backscattered field, using the
AWAS code (Analysis of Wire Antennas and Scatlerers), In [ree space (eq.p1p) and
assuming perfect conductive helix.

54



1) Frequency dependance

On figures 4, we can find the backscattered field of a reference helix (p=d=8 mm)
plotted versus the frequency for different excitations. The first resonance appears

when ] (wirelength) is equal to A/2. The second one (I = 1) is not excited in the case of
lAxis excitation. (In this case, the current on the helix must be symetrical). In the

case of /Axis excitation, and according to the direction of the incident electric field,
the second resonance may be more or less important than the first one. In the case of

I_‘:'i / AC (see figure 5), the coupling occurs mostly on D and B and leads to a

» resonance. In the case of Ei / DB, the most important point is C and the current
distribution is symetrical.

In the investigated frequency range (0O to 20 GHz), we can observe also the third

resonance (I = 3 A/2). These results show that the best condition, in terms of
frequency, to get coupling between an incident wave and the reference helix is
obtained for the first resonance.

2} Effects of p/d on the excitation efficiency

On the diagrams of figure 6, we can observe the fluctuations of the backscattered field
versus p/d. The frequency is tuned to the first resonance.

In the best case of /Axis excitation (E; / DB), the maximum of the backscattered field
is obtained for a value of p/d close to 1. The situation is the same in one of the lAxis
excitations ; in the other case, the value of the backscattered field increases with p/d.

III - CHIRALITY EFFICIENCY

In order to evaluate the chirality efficiency, we plot the ratio between the cross and co-
polarization components of the backscattered electric field. (We cannot observe any
circular dichroism because of lossless media). This ratio is plotted versus p/d for
different excitations on figure 7. We observe that the fluctuations of the cross/co-
polarization ratio differs with the excitation conditions. In the case of lAxis

excitation, we have both cases : increase or decrease of the chiral efficiency when p/d
increases.

In the case of Pasteur media, with randomly distributed helices, it is better to have
medium chirality for each helix whatever the excitation, than high chirality for a
specific excitation and very low for others. For that reason, we shall avoid very tight
or very lax helices.

IV - COMPROMISE BETWEEN EXCITATION AND CHIRAL EFFICIENCIES

We are going to define here a single parameter which is able to take into account both
effects : excitation and chirality. The most suitable is the scalar product between the

incident electric field _153‘1 and the backscattered magnetic field ﬁr.
Cen= Ei. Hr

The crosspolar component of I:ir is colinear Lo _E.i. and so a high chirality will increase
the value of CEy. On the other hand, a high coupling efficiency will increase the
backscattered fields. For easier handling, we modify Cgy in :

B

CeH = 102 [Ei] « [Eq] cos a
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with : Er: backscattered electric field

I

crosspolar of Er )
2

Arctg (

a= —
co-polar of E,.

On figure 8, we see the fluctuations of Cgp versus p/d in both cases of excitation

{ / and lAxis), and it is clear that the maximum is obtained for a value of p/d close
to 1. This result is independent on the direction of the incident electric field E;.

VI - CONCLUSION

These results show that the reference helix gives the best compromise between chiral
and excitation efficlency. This means that whatever the direction and the
polarization of the incident wave, provided that the frequency corresponds to the first
resonance, the interaction with the helix will provide a non negligeable chirality. In
this case, in a randomly distributed medium, all helices will interact with the
incident wave, and the global effect will be important. All these conclusion stated on
the analysis of the backscattered fields stands also for the forward scattered ones.

Figure 1 : Single turn helix

tight helices lax helices
p - B ._p_. =1 » _B. = oo
= =° v od d -
Magnetic dipole Reference helix Electric dipole

Figure 2 : Helices classification
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Figure 5a : Helix geomelry and current distribution for even resonance

Figure 5b : Helix geometry and current distribution for odd resonance
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Figure 6 : Backscattered electric field at the first resonance versus p/d
a) lAxis excilation, E; / helix axis

b) LAxis excltation, E; L helix axis
¢) /Axis excitation, E; / BD
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BORZDOV G. N.

LORENTZ-COVARIANT SOLUTION OF THE INVERSE PROBLEM OF REFLECTION

AND TRANSMISSION FOR A DISPERSIVE BIANISOTROPIC MEDIUM

The surface impedance and characteristic matrix methods
belong to a number of the most general and effective methods
for solving boundary value problems in electrodynamics of
stratified bianisotropic media at rest [1-5]. In Ref. [&,72
these methods are generalized on the case of uniformly moving
media by making use of the exterior algebra [81. Owing to its
advantages the latter is now effectively applied in special and
general relativity, but it still does not take a proper place
in optics. As it proved to be the Lorentz-covariant impedance
and characteristic matrix methods are especially useful in
solving inverse boundary value problems for bianisotropic media
[&6,7)1. The solutions obtained in Ref. [6]1 enable one, by
measur ing reflection and transmission coefficients, to find all
36 material parameters of a stationary bianisotropic medium
provided the spatial dispersion is absent. For an uniformly
moving dispersionless linear medium, the similar inverse
problem is sclved in Ref. [7]1. In the present paper we consider
the general case of dispersive bianispotropic medium with the

four—dimensional constitutive eguation

Gi(x) = jm(zn—‘(g - yaty , (1)
where F and G are the field and induction tensors, M is some
tensor function of type (2,2). It is shown in Ref. [5,7,91 that

dispersive anisctropic and bianisotropic media can be descr ibed

by the generalized material tensors. For a field F with the
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evolution operator 8 (Fix + y) = 8(y)F(x)), the generalized

material tensor M(¥) is defined by the relations
Gix) = M(8IF{x), M(g) = J.M(X)E(—z)d4y. {2a,b)

The material tensor  M(B) can be expressed through the
reflection and transmission operators of the medium as follows.

Let a wave with the four-dimensional wave vec tor
K =1+ 7Q be incident onto =a bianisctropic layer with the
interface normal Q. The four-dimensional impedance ¥ and the
characteristic matrix € [6,7] relate the boundary values of the

polarization 1-forms = (u~v)J(BAF) and h = Q4G so that

h = e , =3y =0, ¥Q@ = yr =0, (3

P ®

= C . (4)
h jx h jx

X, = .

where ~ and J are the exterior and interior products [6-81, u
and v are auxiliary vectors (ud@ = vit = 1, uldr = vidQ = 0). The
relations obtained in Refs., [&4,71 enable one to express » and €
through the reflection and transmission operators of the layer
and to caleulate the wave vectors 5j= T + fé; and  the
polarization 1-forms pj and hj of the partial waves excited in
the layer. To find the field and induction 2-forms F!' and Gt of
& partial wave, it is necessary to calculate also values pﬂ

and h' of its parameters g and h at some other values of 8 and

T, namely, Q' and v'. Then we obtain

1 1

Ft = kAt + .8, &' =gt o+ L@ yAKY3, (5)

where ¥ is the star operator £6~83, ¥ , L and /? are some
u u

.

parameters depending on @, T, pi, hl, Q, pi and h* .
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Let the tensors F and G of arbitrary six eigenwaves with
linearly independent amplitudes (F) be found. Then,
superpositions of these six waves are described by the

generalized material tensor

=] .

M(8) = ¥ G®s. , (&)
: 3
i=1

where the 2-vectors s, are defined by the conditions
§fw“ = é?. Thus, the material tensaor M8 is uniquely
expressed, in the final analysis, through the given (measured)
reflection and transmission operators of the medium. The
cbtained general sclutions of the inverse problems can be used

for developing material parameters measurement methods for both

uniformly moving and motionless media.
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Power Reflection and Absorption for Lossy Chiral Media

L R Arnaut and L E Davis

Department of Electrical Engineering and Electronics
The University of Manchester Institute of Science and Technology
PO Box 88
Manchester M60 1QD
UK

ABSTRACT - The influence of the complex chiral admittance on the absorption capacity
and absorption effectiveness of lossy chirals is investigated. Passivity bounds for the

triplet (e, g, &) are presented for the Post-Jaggard formalism.

1 Introduction

It has repeatedly been claimed that chiral media can provide enhanced absorption perfor-
mance over ordinary dielectric or magnetic media {1]{2], although questions have arisen
to whether this possible improvement is due to the handedness of the medium [3].

The results presented in [1][2] assumed real values of the chiral admittance £ under time-
harmonic excitation. However characterisation of { = ¢ — j£” in terms of geometrical

and electromagnetic properties of chiral elements [4][5] has shown that for realistic helix-
E_I{
El
exceptional circumstances. As a further step towards the controlled design of artificial

hased chiral media the condition for chiral losslessness, % = 0, can be satisfied only under
chirals, it is therefore important to consider the effect of chiral loss, ie a nonzero ¢”, on
the wave propagation, reflection and absorption.

It is important to realize that the real and imaginary parts of & = ¢'(1 — jtané.) are in
general not independent parameters. Analysis of the chirality of lossy multi-turn helices
[3] shows that, for example, for perfectly conducting helices in a dielectrically lossy host

medium:-

’

¢ = g % \/\/1 + tan? Sopost + 1 (1)
host

¢ JI4tan® 80 — 1

6/ - (2)

tan éepoe

tan &,

I
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where g denotes a factor determined by the helix geometry. Hence for such inclusions the
chiral loss tangent takes a fixed value for arbitrary tan &.;,,:. This must be born in mind
when interpreting the following results.

The power absorption capacity A, and power absorption effectiveness A, have been defined

previously for an (achiral) isotropic lossy half-space under time-harmonic excitation [6]:-

4 = time-averaged power loss per unit volume (3)
7 time-averaged power transmitted across the inter face

4 = time-averaged power loss per volume unit (4)
¢ 7 time-averaged power incident onto the absorber

In particular, it was demonstrated that A. shows to what extent a given medium may
be fundamentally suitable as an EM absorber, that is independent of the environment in
which this material is placed, by using a definition which shows to be very useful in prac-
tice. On the other hand, A. was shown to exhibit finite optimal values for €, tan &, u
and tané, at which maximum absorption performance may be achieved for arbitrary
depth d and frequency f within the absorbing medium. The reflectivity R is implicitely
present in the definition of A, since A. = A.(1 — R). We apply the concept of A, and A,
to the case of a lossy chiral half-space in order to gain further insight into the effect of
magneto-electric coupling on the overall loss effects.

The following constitutive matrix equation is adopted to describe the time-harmonic ex-

citation of chiral media:-

D e =3¢
H —j& pt

I

(3)

o f=

with € = €'(1 — jtané,), p = p/(1 — jtané,) and £ = £'(1 — jtan §,). Note that tané, is

a true scalar as opposed to ¢ which is a pseudo-scalar.
Pp P

2 Power Dissipation in Lossy Chiral Media

Poynting’s theorem states that V- § = 12,3 (E-D"—~ H*- B), where § = % (ExH")is
the complex Poynting vector, denoting the local power flux. In passive lossy media, the
dissipated power P = R[S] is a positive quantity and we obtain, after separating into real
and imaginary parts:-

V-P=R Z;(E-Q‘—ﬁ_”ﬁ) —P.+P, +P., (6)



where

P, = g [e'tan e+ 20/¢ tan 6, + /& tan 6, (1 — tan® 5c)] |E (7)
Pn = % (4'tanén)|H[" (8)
P = wy'€ (tan b, + tan é.) S (£ - H7) (9)

Notice that for reciprocal biisotropic media, Per, does not contain a term in R (E - H*),
as opposed to its expression for general biisotropic media [7]. The possible values for
€. p and ¢ are restricted by the conditions for passivity: S () > 0, (e + u€?) > 0 and
3 ()3 (e + ue?) =[S (WO 2 0, ies

@ tan b, > 0 (10)
HE% tané,, (1 — tan? 6,) + 24/ tan 6, + € tan b, > 0 (11)

ue? (1 — tan? 6m> tan? 8, + 42 ¢'* tan 6, tan 6. + u'¢ tan 6, tan 6, + 21/%¢% tan? 6, > 0 (12)

Because of the dependence of £ on ¢ and g, it is in general not possible to deduce from
these conditions explicit bounds for &', £” or tané, for passivity. Therefore, great care
must be exercised in selecting realistic values for the triplet (e, x, £).

Explicit but lengthy expressions have been obtained for the absorption capacity A,, the
absorption effectiveness A, and reflectivity R by integrating over a depth d and making
use of the expression for the wave impedance of chirals. The expressions for A., A, and
R for isotropic media [6] have been retrieved as a special case. The analysis shows that,
in general, increasing ¢, below unity reduces reflection from a magnetic chiral slab backed
by a perfect conductor or from a magnetic chiral half-space, but not for dielectric ones
(unless €, < 1), in accordance with previously obtained conclusions [9]. The effect of
increasing tan &, for arbitrary £/ is a decrease of the reflection from either a dielectric or
magnetic chiral slab.

As an illustration, Figs 1-4 show the skin depth, wavelength, A, and A, for dielectric chiral
media for a '+’ CP incident wave, whereas Figs 5-8 show the results for magnetic chirals.
A. and A, are shown for d = 1 m at f = 1 GHz. The effect of changes in tan 6. is seen
to be comparatively small in general. Absorption essentially decreases with increasing
tan 6. for £ < £/, but increases with increasing tan §, for £/, > 1, where &, Is a constant
larger than unity for dielectric chirals and smaller than unity for magnetic chirals. It is
interesting to notice that the difference between dielectric chirals and magnetic chirals
diminishes the more tan é. deviates from 0 for arbitrary ¢ and the more ¢! deviates from

1 for arbitrary tané,.
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Figure 1: Skin Depth &, (m) as a function of ¢ and tané, for ¢ = (10 — j0.1) e,
p=(1-30) g0, f =1 GHz.
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Figure 2: Wavelength A4 (m) as a function of ¢/ and tané, for € = (10 — j0.1) «,,
w=(1=j0) o, f =1GHz,
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Figure 3: Absorption Capacity A.+ (dB/m) as a function of ¢, and tané, for € = (10 —
70.1) €, = (1 — 70) po, f =1 GHz.
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Figure 4: Absorption Effectiveness A.. (dB/m) as a function of ¢ and tané, for € =
(10 = 0.1) €, g = (1 = jO) pro, f = 1 GHz.
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Figure 5: Skin Depth 64 (m) as a function of ¢ and tané, for € = (1 — j0) ¢, u =
(10 — 70.1) wo, f =1 GHz.
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Figure 6: Wavelength A, (m) as a function of ¢ and tané, for ¢ = (1 —70) €, st =
(10 — 70.1) uo, f =1 GHz.
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Figure 7: Absorption Capacity A.+ (dB/m) as a function of £/ and tan §, for e = (1—30) ¢,,
= (10 - 70.1) po, f =1 GHz.
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Figure 8: Absorption Effectiveness A.; (dB/m) as a function of £ and tané, for ¢ =
(1= §0) €t = (10 = jO.1) 4o, f =1 GHz,
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THE INTERACTION OF ELECTROMAGNETIC AND ACOUSTIC WAVES IN
BIANTISOTROPIC CRYSTALS WITH ELECTRICALY-INDUCED ANISOTROPY

Belyi V.H.,Kulak G.V.

The interaction of electromagnetic and acoustic waves in crys-—
tals ( acoustooptical interaction ) finds broad application for ope—
ration different kinds of materials. Now for this purpose bianisotro-
pic crystals which have good photoalastic and gyrotropic properties
are used. In the last year gyrotropic cubic crystals of silenite
structure are used, such as: germanat, silicat and titanat vismut
crustals and others [1,2]. If for one-axle and two-axle crystals we
must take optical gyrotropy into acount only for light beams directi-
ons near the optical axis in orystals , but as for oubic crys-
tals it must be taken into acount for any geomeiry of the acousto-
optical ( hereinafter “A0" ) interaction [3].

The pecullarities of A0 interaction in one-axle gyrotropic crys-
tals under the approximation of given polarization ( elliptical )} have
been considered in [4]. Using numerical decision of the differential
equation system by means of electronic calculation machine ( EQM )
different geometries of AO interactions in gyrotropic cubic cerystals
with electricaly-induced anisotropy have been investigated [5].

In this paper by using slowly changing amplitude method, Brage
diffraction in gyrotropic cubic crystals with electricaly-induced ani-

sotropy is carried out. Analitical expressions, which give the possi-



bility for caloulations of energetioc and polarization oharacterist:-
of diffracted waves in regime of strong and weak interactions are ::

taind.
Now let us see non-collinear geometry of light waves interacti:

in the nearness of 07 axis of the cubic crystal with acoustic wave
which spread along the 0X axis ( plane of diffraotion is perpendioy-
lar to OY axis ). Let's assume that ultrasonic waves with displa-
cement vector ﬁ=§oexp{i(Kx-Qt)] { E=f)/v, {1 is the frequense and v is

the phase velocity of ulfrasound ) is in the space between the plans
z=0 and z=1. The ulirasonic wave makes periodic in time and space

changies of dialectrical tensor permitivities Asik’ which is connect
with the elastic deformations
Uik=(1/2)(vkvi+viUK)
and photoelastic constant pijkl by means of expression:
88 11="8118 1P jmnmn’
where Esy is the dielecirical permitivities tensor.

In the region of ultrasound and light beams crossing under the
influence of the electrical field'ﬁo on the cubic crystal the induse
polarisation of medium appears

—f{_g2 * “
P.=(-g /8%)(ﬁikﬁk+ﬁik E ), (1

where tensor ﬁik is connected with Pirim and electrooptical constant

*)

rikl by means of

_ o .
FixPikimlim Tix1 By - (e
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Por calculations of the diffracted light amplitude we will re-
ly vpon the Maxvell equation systems
- -
g8 an
rotE=—(1/o)5; s rotH=(1/o)'5;

—
(93
~—

and material equations [1,7] for bianisotropic dialeectrio medium
> > B - - - _f-"’ R
=gE+17H+47P, B=H-17E, {42

where 7 is the gyrotropic parameter.
Prom expressions (1) and (2) wave equation for light field
strain in the region of ultrasound beam follows [5]
- drotE 5 5 5. 2 3°E 5 QEE
rotrotE-2iY(1/c) 5, + (€5/¢°7%/c Jgre =—(4m/c%) .2 . 53

The decicion of wave equation (5) may be written in the form

f2,2,51:
E=F (2)expli(k Fwt)]1+E, (z)expli(k,T-ut) 1, (6)
where

Eoon(z)eo+Bo(z)e2, E1=A1(z)eﬁ+87(z)ez, (73

and éoz[koéb}/'{koéé]" 51=[K1§é}/§[E1§2]j; éé is the single vector,

which is ortogonal to plane of AD interaction.
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By iniroducing expression (2) into wave equation (1) the diffe-
rential equation system for complex vector amplitude may be writter

in the form [3,8,10]:

@& . .
——°=PEO+QE1.
dz
—-—3=FE1+LEO.
iz
where
boo  BpotP Xy Egp
P= ’ Q= .
bog=P bsp g Eyp
2o By Bygtd Agotp
L= 14 F= [y
o Eyp boy=p Byoth
and b= (1/A,ntose,) (5,48 5,), &, =(inn’/2h Cosy,) (5 AsE),), A=

=(2chos@0/w)®k ( 8k is the deturning parameter ), Aeez—eér:Eois the
dialectrical permitivities perturbation tensor by electric field ED;
Ms¥=0,1,2. In (3) the matrizes P and P describe the anisotropic and
gyrotropic crustals properties in the external electrical field ﬁo,
but Q and D are photoelestic properties.

Using matrix method [9-10] and boundary conditions ﬁg(z=0}=(%{,
A )T, ﬁ {(z=0)=(0, O) %; - complex amplitudes of the incident
lighf{ wave on the boundary of the AO interaction region z=0, “%*" is

the symbol of the transparence operation ) the desicion of equation

system (3) may be written in the form:

T4



For 2x2- matrix M=F+DPD | with elements My =My, My5=M,,=0, the solu-

tion of equation system (8) may be written in the form [31:

=D~ (~Fexp(~0.5Mz) (1/¥1)Sin(z/T)+exp (-0.5M2)D ™ Cos (zvD))DE (0,
{103
Ey=exp (-0.5Mz) (1/0) (8in(z#T) )DE, (0),

where T=(DPD-1F—DQ—M2/4). The matrix functions in expression (9)
and (10) may be calculated from Keli-Gamilton theorsm {10,11].

The forth-order system (8) may be solved exactly only in regime
of small coupling ( !wijll<<1, where 1 is the length of A0 interaction
). Using the boundary condition E, (0)=0, we obtain directly [8]

E (z)=E,(O)exp(zP),
(11,
E1(z)=exp(zF)szexp(z'F)Dexp(z'P)ﬁO(O)dz"

It should be noticed that expressions (11) may be used for cal-—
culations of many AQ devices [12]. Now we demonstrate the case of AOD
interaction in gyrotropic cubic crystals in the (100) plane for
shear acousitic waves whioch spread along the axis [001] and are pola-

rized along [010]. Under this conditions extermal electric field E°

~
w



must be applied along {010] direction. Such a geometry of AOD interz--
tion may be of great interest for making AO devices. Using (4) the
complex-vector amplitude of diffractsd wave on the boundary of AQ i--

teraction z=1 may be written in the form:

E =®exp (-101/2){[- (N81n311+N81n321)A!+R(Cosa 1- Cosa21)%!
-{ASina l+ASina2l)A 1+iA (BS1n311+BSina21)}e +
+a2exp(—161/2){{(N’Sma1l+NSlna21)Al+R(Cosa.1 ~Cosa,1)A + g
+(ASina1l+ZSina21)A”]+i(BSina1l+§Sin321)A”}§2,

where
4=208 /2, (a, —a2 )1, B=t48.%-a%4a,2) 123, (a,%a,2)1,
N—pﬁ/iaj(a1 -a, )1, R=2Ae/(a1 -a2 )s

2=¢<é2/4+a +0 +A °)a f/p +8 24P )P (224 o5

- (P48 ) (pP+h B-02)+ (8 S-2p%F) |
and 4 =tn’r, E°/A_, #=(mn’ py4/2h,) (21 /ov3)"'2 (rgq (D) is the elec:

reoptical ( photoelastical ) constants, I. is the ultrasonic inten-

a
sity). Symbol *.* signify as®a, . Deturning from Bragg condition is:
8=(mv/t)APp, where Ap=@—p,,, and $p=arcsin(A f/2nv) is Bragg angle.

We see that expression (12) indicate the existense of the eilip-
tical polarization of the diffracted waves. When EC=0 the expression
(12) coincide with expression for diffracted wave amplitude which
has been obtained {3]. We enclude phase deturning coefficient & in
expression (12) for calculation amplitude~-frequennoy oharacteristins

of AD devices [121.
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Numerical calculations of polarization and energetic characte-
ristics of the diffracted waves for Bi12G8020 orystal where carried
cut. We take into account that ultrasonic frequency is £=200 MHz,
light wave lengh is KO=O,63 pm. Photoalastioc constant is p44=D.O4{133;
optical activiiy per unit length is p=22 degree/mm;electrooptiocal
constant is r41=3,7x10—12m/v;density of crystal is 0=9,22 g/cmB.Sche—
matic diagram of AO interaction is presented on Fig.1. indsr this con-
iitions X yy {0011, Uy [0101, B2 ¢ {010].

In the Fig.2 the dependence of the diffraction efficiency 1=
=l§1i2/1Al§2 versus the interaction length 1 for different electric
tield E° and incident light wave with s— polarization is given. Thus,
when the external electric field E° encrease the value T will enc-
rease also. It should be noticed that this ciroumstance is due to the
induced crystal anisotropy Ase which suppresses the circular anisotro-
PY.

This physical effeot may be due %o the distruction of the peri-
odical dependence the diffraction efficiency m from interaction length
1 under which full energetic exchange between zero- and first-order
diffracted waves is take place [6].

The dependence of the diffraction efficiency 71 versus angie de-
turning coefficient are plotted in Fig.3. We see that angular sensi-
tivity may be strongly changed by means of external electris field E°.

Additionly, we note that for the Ap=0 the ocenter minimum is dis-
appeared, but the diffraction effinienoy under the applied elecirin
Zield are involved in all angle of light incidence.

We see from Fig.4 the dependence of the diffraction efficiency

versus polarization azimut incident light ¢=arotg(A]/AL) under the



different external electric field strain E°. We see from Fig.4 ‘rz-
the diffraction efficiency did not depends from light incident polz-:-
zation azimut. The diffracted light ellipticity T=%g{0.5arcsin{2In :
/(1+§q£2)}}, where q=(§152)/(§1§j). We see on Fig.5 the dependencs
of T from ¢. Also, we see the periodic cheracter the diffracted 1iz--
ellipticity from the polarization azimut .

It should be notice that diffracted light polarization azimui =
=O.5arotgi2Re(q)/(1—}ql2ﬂ, i.e. polarization ellipce big axiec orien-:z-
tion of diffracted wave, did not ooincide with polarization azimui .
of incidency one.

Thus, electiricaly-induced anisotropy have a big influence on ir:
acoustooptical interaction in gyrotropic cubic crustal. The influen--
of the external electric field in the case of diffraction by the shez:

acoustical wave under the longitudinal elecirooptical effect allowed

3

us to have possibility to exclude any boundaring by the diffraction
efficiency in gyrotropic cubic crustals and reaching practically full

energetic exchangion between diffracted wave.

78



79

e,
-
n
L‘é
n
of

4

k

k
©
b

b
chematic diagrm

Fig.1.8



E,em
Fig.2.The dependence of %he diffraciion efficiency on the interac
length 1 for different eleciric field E”:1-032-133-3;4-5;5-7 (kV/or

80



Fig.3.The dependence of diffraction efficiency v versus angle A@ for

lectric field EO:1-032-13;3~334-5 (kV/cm) (1=4 cm,za=maW/cm2

D

gifferent ¢

[

$=0).

8l



"
10l
0% 5
0.6 } y
0y ¢ 3
027 2
2 1 Il L 4 1 1
0 30 0 90 120 150 180

Y, degzee

Fig.4.The dependence of diffraction efficiency 7 versus polariza-

tion azimut ¢ for different electric field E7:1-032-133-234-3;5-5(k
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10 7

Fig.5. The dependence of elliptisity T versus ¢ for different

electric field E°: 1-132-33;3-5;4-7(kV/cm) (1=4 om,Ia=102 W/cm2,5=0).
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ABSTRACT

In this paper, the focus is on experimental microwave chiral research. After briefly
discussing wave propagation in a chiral medium, as well as basic equations relative to
reflection and transmission through a chiral slab, and reflection from a metal-backed chiral
layer, current artificial chiral materials active at microwave frequencies are mentioned. In
particular, we describe the processing of chiral composites with ferroelectric ceramic
inclusions. Then, the free-space measurement bench used for characterizing the samples is
described, along with the method for computing the constitutive parameters. Results on the
chirality parameter and the reflectivity are given. We also introduce some work done on
numerical modeling with finite-element computations.

1. WAVE PROPAGATION, REFLECTION AND TRANSMISSION

The description of chiral, or reciprocal bi-isotropic media, requires a third complex scalar
constitutive parameter in addition to the permittivity and the permeability. One way of writing
the constitutive equations, known as the Drude-Bom-Fedorov formalism, is as follows {1]

D =¢gpE + epfVXE
B = upH + uppVxH

(1)

Analysis of wave propagation in a chiral medium [2] shows that there are 2 canonical left-and
right-circularly (LCP and RCP) polarized waves in the medium, which respective
wavenumbers k_and k, are
k. =—K  and k, =—K @
1-kB 1+Kkp

The intrinsic wave impedance of such a medium is given by n = (u/e)m.
Using the impedance and the two LCP and RCP wavenumbers, reflection and
transmission through a chiral slab of thickness d can be easily quantified. Writing

=Tl-ﬂo
n+no’

@ =eik--kod apd P = e2ikd 3)

where 1), is the impedance of free-space, the normal incidence reflection coefficient for a
linearly polarized plane wave can be written as

_T(1-®¥)

Si 4

5
1-T oY
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while the normal incidence transmission coefficient (corresponding to the copolarized part of
the transmitted field) is

172 2
5, =L+ ®¥ -T) -

21 -T2 oY)

Because the two complex LCP and RCP wavenumbers are different, both circular
birefringence and dichroism occur in transmission. The transmitted wave is therefore generally

elliptically polarized with an ellipticity tan@, the major axis of the polarization ellipse being

tilted with respect to the incident wave polarization direction by and angle a. The rotation
angle and the ellipticity are given by
_ Re(k -k,)d Imck_ - k+)d)
4=

> ©

and tang = th(

The normal incidence reflection coefficient R of the same metal-backed chiral layer can also be
computed and is expressed as

N-MO _ 4 2ikeqd S
p={+2¥) _M+no , where keq=k';k+= ©TEDiD 5 ¢
1-ToY | N0 ik 1 - (wYeppp B)
N+ Mo

All these expressions strictly apply to homogeneous or effectively homogeneous chiral
media. For composites which inclusions are not necessarily small with respect to the
wavelength in the matrix, they still allow a simple description of the interaction between the
wave and the composite chiral medium, and yield reasonably good results [3].

2. ARTIFICIAL MICROWAVE CHIRAL MATERIALS

Lindmann was a pioneer in fabricating and measuring chiral composites optically active in
the GHz range [4]. Recently, extensive experimental studies were carried out in the USA on
composites with metallic helices [5]. Some activity is now developping in Europe. In order to
fully benefit from the degrees of freedom brought by the nature of the inclusion material, it
seemed interesting to us to explore the possibilities offered by ceramics. We therefore decided
to work with ceramic inclusions.

A high dielectric constant material, barium strontium titanate (BST), was chosen as the
inclusion material [3]. Ceramic helices are produced by coating carbon fibers with a ceramic
slurry, and winding the subsequent fibers on a graphite rod. After a suitable heating cycle,
carbon- and organics-free sintered ceramic helices are obtained. The helices are then randomly
dispersed into an epoxy matrix, which losses can be adjusted by the addition of carbon
powder.

3. MEASUREMENT TECHNIQUE AND MATERIAL PROPERTIES
COMPUTATION METHOD

The stage following the composites processing is the evaluation of their microwave
properties. A free-space measurement setup existing at IRCOM is used for that purpose. It
consists mainly of 2 spot-focused horn lens antennas linked via transitions and coaxial cables
to an HP 8510 network analyzer. A view of the bench is presented in figure 1. A description
of its general features and calibration has already been given elsewhere [5,6], so that we
should focus only on material properties measurement.

Three independent complex quantities must be obtained in order to be able to fully
characterize a chiral sample. In our case, the technique used is basically a reflection-
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Figure 1: IRCOM free-space microwave bench. Recent upgrades make testing from 6 to 110
GHz possible. A furnace with transparent windows can be used for working up to 800°C.

transmission one (therefore thickness resonances may perturb the results). The normal
incidence reflection coefficient, along with the normal incidence transmission coefficients for
the copolarized and crosspolarized parts of the transmitted field are measured. The
computational scheme is as follows (see [3] for details). Using (5) along with the
corresponding equation for the crosspolarized part of the transmitted field, the rotation angle
and the ellipticity can be directly obtained. Then, using (4), the wave impedance is computed.
The next stage is the computation of k_ and k, , where an ambiguity relative to the

determination of the real parts of the 2 wavenumbers has to be solved. Finally, from the values
of 1, k_and k_, those of €, 1, and B are easily deduced.

4. SOME EXPERIMENTAL RESULTS

Figure 2 represents the measured chirality parameter of one of our samples. The
resonance region, not represented in the figure, is around 6 GHz. At 10 GHz, the magnitude

0. 50
= 1 Imaginary part
E i
E 024 -
g - -:"-.___
5 oo T W
o -
2 4
E ]
g 0Bt
b Real part
-O'i)-‘llllllllIllIIIIII'Y‘IIYTI[III'IIT]
PARAE IS SIS AP UMM AR P +

Frequency (GHz)

Figure 2: Chirality parameter of a composite with 3.4 % (in volume) BST helices (diameter =
pitch = 3 mm, 3 turns, left-handed) in an epoxy-carbon matrix. Thickness 9.1 mm.
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of B is about 0.28 mm: this yields values of Ik Bl and kB respectively equal to 0.14 and 0.02.
which show that the degree of chirality is fairly low, even though the rotation angle of the
composite is about 40° at the same frequency.

On the same sample, € and i were measured and the 3 constitutive parameters were used
for computing the normal incidence reflectivity using equation (7). The reflection coefficient
with metal backing was also measured. The comparison between computed and
experimentally determined values is shown in figure 3.
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Figure 3: Measured and computed normal incidence reflectivities of a composite with 3.4 %
(in volume) BST helices (diameter = pitch = 3 mm, 3 turns, left-handed) in an epoxy-carbon
matrix. Thickness 9.1 mm.

The fairly good agreement beetween the 2 curves shows that the measured values of the
constitutive parameters may be used for predicting reflectivity values, even though the size of
the helices is comparable to the wavelength in the matrix and to the thickness of the sample.
Further experimental work is underway to quantify scattering effects in such materials.

5. NUMERICAL MODELING

One of the challenges of chirality research is to establish a link between the microscopic
properties of the material (i.e. the properties of the inclusions) and the macroscopic properties
of a composite. We have developed a numerical technique, based on the computation of the
field scattered by an helix, aimed at calculating the properties of a chiral homogeneous
medium. This technique involves a finite-element computer code, Antenna Design, developed
at Thomson-CSF Radars and Countermeasures Division. Preliminary results on the radar
cross section of ceramic helices have been presented recently [7]. More detailed results on
metallic and dielectric inclusions, as well as experimental validation of the modeling results
will be reported soon.

CONCLUSION
In this paper, we tried to give a panorama of microwave chirality research at Thomson-

CSF and IRCOM. Ceramic helices are fabricated by a coating-winding technique, which
allows a wide range of materials to be shaped in the form of a small size spring, and dispersed
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in a host medium to produce chiral composites. Using a free-space bench, normal incidence
measurements are carried out on the materials and their effective properties. including chirality,
are computed by an analytical method. Because of the heterogeneous character of microwave
chiral composites, it appears that new measurements and numerical models are necessary 1o
better quantify propagation and loss phenomena in these materials. Ongoing work is currently
devoted to computer simulation of electromagnetic scattering by an helix.
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THE COMPOSITE GYROTROPIC PLATES
E.A.Evdischenko, A.F.Konstantinova, B.N.Grechushnikov
Institute of Crystallography, Russian Academy of Sciences,
Moscow, Russia
In the development of works [1,2] we have dealt with the plza<s
composed from two equal gyrotropic crystal plates. The angl:

betweegEheir principal directions (their fast axes) is 6.

We assume that the eigen waves are orthogonal (one <:
another) ,their ellipticities k1,2 = t.garl’2 are equal, the reversal o.=
the ellipses is an opposite, i.e. k, = - kl in the each plate.

We select the fast axis of the entrance plate as the azimuz-
reference. We denote it V. Then the exit plate azimuth is 6 . Later c-
fast axes directions of entrance and exit plates we shall call the
en~trance axis and the exit axis respectively. To analyze the acticr
ogguch composite plate at the passed light we have written the Mueller

matrix of the composite plate:

N o
1 0 0 o]
0 2ABsin26- 2AB cos28 + -2D{A cos 26- B sin28)
-(a%2-B2-p%)cos26  +(A%-B%+D%)sin2e |
M= |0 -2 AB cos26 - 2AB sin26 - -2D(A sin2e+ B cos26) |(1
-(A%2-B%-p?)sin26  -(a2-BZ+D?%)cos 20
K -2 AD 2 BD 1 - 202 -J
where A = [1—sin227 (1-cosd)]sin® -sin2y sins cosf; B = coss coso +
+ sin2y sind sinsg; = cos2¥ [sin2y sin@ (1-cosd) + sind cosé],
s = 2nd(n2-n1)/h is the phase difference due to eigen waves passage
through the each plate, d is an each plate thickness, n,,n, are ref-
ractive indices of eigen waves . If one introduce new notations
- s . - _ + .
tg 264=A/B -~ siné sin2y [sin2y sin8 (l-cosd) cos8 sind] . (2)

cos8 cosd + sin2y sing sinsg,

sin A/2 = D cos2y [sin2y sinB8 (1l-cosd) + cosB sind],

the matrix (1) may be written in the form of a two matrices product:
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0 0 0 .j

{1 0 0

0 1
M = *O cos2¢ sin2p O 0 C2+ Szcos A CS (1l-cosA) S sinA
i
|o -sin2¢ cos2p O 0 CS {1-cosA) s?+ CzcosA -C sinA (3)
o o o 1| {o -S sinA C sinA cosA

where C = coszel, S = 51n281, ¢ = 291 - 8

It is easy seen that the first matrix is a turn matrix through an
angle ¢, the second one is the Mueller matrix of some birefringence
nongyrotropic crystal plate. The phase difference of this plate is A

and its fast axis 1is turned through an angle 8. with respect to V. In

1

order to understand the physical meaning of parameters 91 and A we

nultiply (3) by the Stokes's vector of the incident light. The inci-

dent light is linearly polarized and its azimuth is 81. After simple

transformations it is seen that the exit light is linearly polarized
too and its azimuth is 6&- 8, with respect to Vv, i.e. its azimuth is
—81 with respect to exit axis. Thus two axes are defined , one on the

entrance face (its azimuth is 6, with respect to entrance axis), the

1

other on the exit face (its azimuth is -6. with respect to exit axis),

of the composite plate, such that light piane polarized with its vec-
tor parallel to the incident axis emerges plane polarized with its
vector parallel to the emergence axis. We shall call these axes "effe-
ctive fast axes" by analogy with the plate composed from nongyrotpic
plates [1}. By the same analogy A is called "the effective phase dif-
ference" of the composite plate.

Let us examine exceptions of parameters 6, and A. It is seen

from (2) that A=0 by k=1 (y=n/4) or by 9=8R !

tg eR = - 1/sin2y tg §/2. (4)
Really taking into account (2) and (4) we have
tg o= tg(261—6)= (A cos eR—B sinGR)/(A sin9R+B coseR)=—tg 261, (5)

Thus if two gyrotropic plates have turned by their fast axes
through the angle 6, determined from (4) the composite plate changes

This

only the azimuth othhe emergence light at the angle 26 = 26p-
case corresponds to one by ¥ = 0 and 8 = m/2.

Two gyrotropic plates may be too combined to produce circular
polarized light from plane polarized one. By multiplying the Stokes's
vector of the incident plane polarized 1light into (2) we get the
normed Stokes's vector of the emergence light. By equating to 0 its

last component we get:
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M cos 20+ M sin 2a = 1, (6
42 o 43 o
where Mij are elements of the matrix M, a is the azimuth of incide-s
plane polarized light, plus or minus corresponds to right- or leftc:r-
cular polarization on the exit face. By taking into account relatic--
ship (2) we have
) sin 2(a_ - 8,) sind =+ 1. (7)

It is clear that moduli cf both co-factors must be egqual 1. Consz-

quently the second relationship from (2) can write as
sin A/2= cos2y [sin2y sin6 (1l-cosd) + siné cosg = + sin n/4. (8)

One can take the angle { such that

sin2y cos2y (1-coss)/ V&-cos427 (l-cosa)z,

4

cos (

sin cos2y siné / V/l-cos 2y (l-cosa)z,

then (8) is rewritten as

sin (¢ + 8 ) =% (sin n/4)/ Vrl-cos427 (1-cos§)2 . (9)
From (9) is followed
4 2’4/2
J;1[ 1 - cos 27 (l-cos &)%) / 2K 1. (10)

After the transformation of (10) we get the equivalent inequality

(2 -¥2') /4 < cos®2y sin®ss2 (2 +\V2') /4 . (11)
It is seen that the equality (7) is not true for arbitrary values

e A and hence for arbitrary ones 7y , §.

’
! Thus it is possible to transform the plane polarized light tc
the circularly polarized light by using two equal gyrotropic crysta.l
plates. To do this one would require to be convinced that values 7, ¢
of taken place satisfy by inequality (11). Then it would defined

sequentially values 6, @ o« from relationships (9), (2), (7;

’
respectively. !
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ACOUCTO-ELECTRON INTERACTION IN CONDUCTOR CRYSTAL OF FERROELECTRIC
CERAMIC IN THE CONDITION OF INDUCTING OF PIEZOELECTRIC,ANISOTROPIC
AND GYROTROPIC PROPERTIES BY THE ROTATING ELECTRIC FIELD

1.V.Semchenko',B.B. Sevruks S.A. Khakhomov'

1Gomel State University,Department of Physics,Sovjeiskaya Str.104,
246699 Gomel, Belarus
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In the article {11 a possibility of rotating acoustic anilso-
tropy forming in crystals under outside electiric field influence
is shown. In the book {2} 1s proved that the crystal placed into
space-uniform rotating electric field has analogy of gyroiro-
pic properties to crystal with stationary spiral-nommiform
acoustic anisotropy In the article [31 the propagation of the
acoustic waves in the spiral dielectric structures with great
values of the permittivity controlled by the electric field is
investigated. In the given work the propagation of the cross
acoustic waves in conductor crystal with nonstationary anisotropy
induced by the rotating eleciric field taking into account
ultrasonic interaction with free conduction electrons 1is
considered. The reversed and passed waves Intensities dependence
from thickness of crystal is siudied.

We shall describe the properties of crystal of ferroelectric
ceramic(for example,on the basis of barium titanatum) using the
material equations

o=C7 + eongEO D=808E - songo"{
where oO,7,c- tensors of tensions, deformations and elastic
constants, g - tensor of rank four, -gEO - tensor of rank

three,taking into account pilezoeleciric effect induced by the
rotating electric field, €5 the electric constant, & - the
relative permittivity of the medium.

The crystal is placed into electric field rotating round axis
X{unit vector a )} with components

Ey,= 0, By, = -Esin 0t 'Eos = E,cos Qt

E, and @ - amplitude and electric field rotation frequency.
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We shall describe the influence of acoustic wave on the Ifree
conduction electrons 1in crystal using the Maxwell's equation

Rl &

= -en

where D -electric induction,e - elementary electric charge,
n-change of electiron concentration,. which 1is caused by the acoustic
wave.

The equation of elastic wave propagation is

where u -displacement vector, p -medium density.

We can define the movement of electrons captured by
longitudinal piezoeleciric field of acoustic wave by the equation
of contimuity

daj an
ax = ¢at
and the equation of motion of electron

gdv e ka dn

—_ == —F - yyv - _— 2)

dt ot ! m*NO dx
here j=—eNOv - vector of density of current, v - velocity of
electron, m*- effective mass of electron, v - Irequency of

collision,k, - Boltzmann constant,T - absolute temperature.No—
balanced concentration of electirons.

The use of the method which was proposed in {1,4] allows to
determine the wave numbers and the ellipticities of the proper
modes of the crystal with rotating anisoiropy.

Let's consider the case when on the crystal border in x=0
circular-polarized acoustic wave is excited

u= uOr_x_expi-int + 1k Xl (3)

elastic displacement vector of which has the same rotation
direction in time as the outside electric field.

As a result of propagation in the crystal ultrasonic waves
interaction with rotating electric field, amplification of the
passed wave at the frequency w,

u,= u.n expl-iw,t + ik x) (4)
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and generation of the reversed wave at the frequency 20 - w, can
take place.

u = un,expl-1(u -2t + 1k x1 (5)

As a result of ultrasonic waves reflection from the border of the
crystal with rotating anisotropy, the reflected wave at the
frequency w,

u = un expl-lw,t - ik x) (6)
and the passed wave at the frequency 2Q - w, can also appear
..~ ucmg%exp{—i(wo—ZQ)t - 1k x] 7)

There k',k" are wave numbers depending on waves frequencies and
parameters of density and elasticity of the medium bordering when
x=0 and x=L with the crystal placed into rotating electric field.

Representing according to (51 the acoustic field in the
crystal with rotating anisotropy in the form of the superposition
of four proper modes, from the conditions of contimuity of wave
elastic displacement vectors (3)-(T) and contimuity of tensions
tensor components on the borders of the crystal [61,we have the
system of eight equations.

The eight equation system has a large size therefore we do
not write it here.

The amplitudes of all waves can be determinated as a resuit
of numerical solution of the eight equation system. As a example
in figure is presented diagrams of reversed and passed {at the
frequency w,) waves intensities dependence on the thickness of the
crystal I in the case of resonance Iinteraction,i.e. when the
frequency and rotation direction of electric field coincide
with those of the displacement vector of acousiic waves (wO=Q).
Calculations were made with the values of parameters

3
vt=2.5 x 10 m/s -the velocity of acoustic waves without influence
of electric field ,m"= 0.0145m,,Q = 1078z, W= 10%z,v=1013 571,

7=290 K, ¢=10'! W/m®,p=5.7x10° ke/m°,
the change of parameters,which is caused by the eleciric field has
range a few per cent.
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DISSIPATIVE PROPERTIES OF GYROTROPIC SUPERLATTICES
IN THE LONG WAVELENGTH APPROXIMATION

3.S.Mityurich, E.G.Starodubtsev

Department of Physics, Gomel State University, Soviet Sit., 104,
246699, Gomel, Belarus

The light energy dissipation in gyrotroplic superlattices (S1L)
1s calculated in the approximation for the opitical wavelengths
A>>D, where D is the SL period. The determination of the SL

parameters by photothermoacoustic methods is proposed.

SL optical properties are simply described in the long wa-
velength approximation (IWA) when the period of the SI  is more
less the lengths of optical waves propagating in the superstruc—
ture. Then we can consider the SL as a homogeneous medium cha-
racterized by a set of the effective parameters [1-31.

In this paper the dissipation of the electromagnetic field
energy is investigated in the IWA for the SL including nonmagne-
tic erystals of the cubic symmetry. The one-dimensional consi-
deration is made with taking into account the multibeam optical
interference and circular dichroism of the SL components.

1. Theoretical model.

We assume a monochromatic elliptically polarized iight in-
cident on the SL normally to the layers boundaries at the plane
z=0 (in the SL region 0<2z<l). The SL consisting of absorbing
cubic crystals is characterized by the axially symmetric Comp—
lex dielectric constant tensor £ and optical activity tensor

Te [3]. The equal principal values of these %ensors are:
(se}H = (86)22 = X, + {1—x)82 ’ )
Tel11 = (Tglop = 27y + (1-1)7, \
Here the period D of the SL consists of two layers with relati-
ve thicknesses x=dﬂ/D and 1—X=d2/D(d1+d2=D).The quantities with
indexes '"e,1,2" concern the effective medium, first and second
component of the SL correspondingly. Circular dichroism is des-
crived by imaginary parts of the optical activity tensors which
will be designated Yo 7?, 7§ .

Optical properties of the axially symmetric gyrotropic
crystal in the direction of the optical axis are equivalent %o
the ones for the optically active isotropic medium with the

97



complex parameters €e=(89)11’ 7e=(7e)11 [4}.S0 the dissipation
of the energy in SL can be described by the familiar relations
[5,6], with taking into account Egs.(1):

e, = Q +Q, 2)
Q, = NO e EN T,exp(-a, 7) T exp(a,z-2p1)1,
where N_=n' /E » N=|n_ *n, I ={1 +T)2/(1+T by ﬁ=(4%/h}ng s

i=(4%/h)(ngz?é),E=E1+{5281n(a1)+§3008(&1)Jexp ~ﬁl)+§4exp(—261),
®=(41/A)n! 51=1n +n1}2N s §y=4nf(n, +n5) ({n le—nqne) s

& =8n nen"2—2(1n jo- )(in }“ na) ;4 ln -n, 32N . Here I and 1
are incident light 1nten51ty and elllpSlty {T€<0 at left polarl—
zation), n O—fPe—nD+1ng {12 -1}, and quantities with indexes "+"
correspond to the left and right circular polarized waves super-
position of which describes the field in the effective medium .
We assume non-absorbing media behind and in front of the SI to
have real refractive indexes n, and n, correspondingly.

Egs.(2) are rather complicated for the analysis. Even neg-
lecting the SL components dichroism and refiected waves we ob-
tain the equation of degree 5/2 from the one dQe/dx=O. At I»1/8
Egs.(2) are simplified

Q = N Io,NT exp(-a,z) , £=f, , (3)
that oorresponds to the semi-infinite SL o

It is seen from Egs.{(2) that described by the quantity ¢
nultibeam interference takes effect at I1/8 . In this case at
usual assumptions féé, Nys Do, fgézn1 . fEéth > sg/(2¥§é} Egs.

{(2) give £ = Ei + g? _2g+g_exp(—@l)cos(&l) s (4)

ase.

where Ei=(atn7)(a:n2) ’ a=¥§é . S0 the optical interference ef-
fect on the SL dissipation is characterized by the parameter
cos{®l) , where &=(4%/K)£x8{+(1—x)8é]1/2

To compare the SL and its components dissipative proper-
ties we used the parameters: uF =0 /Q i» P =AQ /AQ s J=1,2, where
AQ;=0Q; (+1)-Q; (12, i=e,t,2 and Qq—Q 15_1, Qa Q elg=p - Here n5
r-haracuerlseu the dissipation and QJ - the difference in dissi-
pation for the right and left polarized light in the SL relati-
vely to the same quantities in the SL component j {at z=const).

2. Graphical analysis and discussion.

The fol owing quantities were assigned constant values: I
0.15 W/ sm® » N4=1, n,=1.5, z=tum (bright limits varying of z dld
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not change the form of the dependencies reported here). The pa-
rameters 1,x,A,T and SL components properties were changed. The
Qg (x) dependence at various parameters(Tab.1, 7¥=1O—5,7§=3~10-§
A=0.55 pm, T=1) is illustrated by Fig.1. The Qe(x) form mainly
described by Eqs.(1) is near linear and symmetric at the trans-
pogition of layers 1«2 (curv.1,2). Qe(x) oscillates with para-
mefers @1 at 1<1/B(curv.3). At the data the SL dissipation have
practically no dependence on the components mass parts{curv.4).

] Fig.t Table 1.
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p — -2
% 4 4 1(5,1.8:10 3) {2,107y {60
F2.3 _
1.85, ; N

o0 O;'zelotivoe'f thic%gess 58 e

The 7, (A) dependence at 81=(3,1.5'7O—2). 82=(5,2»1O_2), X=
0.2, 1=3um (curv.1), 40um(2), and the same values of 7;,7§,T is
shown in Fig.2. One can note a characteristic beats form well
described by Eq.{4) and that No>1 at the definite A(though here
61<ﬁe<52 for absorptivities).It is interesting that pj(h) depen-
dencies are practically the same shown in Pig.2. So at the defi-
nite parameters the SL dissipative properties including dichroic
ones will not be intermediate between the same components pro-
perties. Strong oscillations of light absorbtion in the SL re-
latively to absorbtion in the components appear at 1<1/8.

Fig.2 Fig.3
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SL dlSSlpaE;Dn is characterized Dy g J.Here E,= {3,610~ },u2
kD 10 J\ 7"{—,‘7 40 Dfpm 1 4’ 5)9 * (2yJ) 7"_ "’D 6f\1y2’4’)-/)1

X

R, (1) dependence at 7g<10_ with growth of the Y. becomes non-
linear{(1,4,5) especially at near-circular polarization. The da—

The effect of incident light el‘lp51+ on th gyro;ropiﬂ

10_5(3),1=5p.m, A=0.55um, g=O.H5} 0.5(2, J,4> 0.9(1). The weak

ta of Fig.3 show too that variation of the geometry and optisal
constanis of the components gives the opportunity to gain the
1. with designed dichroie properties(2,3,4).

The data reported can be used for the control and determi-

nation of the SL parameters by photothermoacoustic methods {71

where the signal measured is proporiional %o the value of absor-
bed light snergy. For example, as it is seen from Egs.{1) and

Fig.1 when x=0.5 the signal must not change at the radiation

from the SL opposite sides (with taking into aceount the backing
effect).Af arbitrary x having determined the wavelengths for two
neighbour maxima  of the Qe(K, one can gain from Eq.{4) with

faking into account the dispersion Eq(h), 82{A) the gquadratic
equation in the unknown x. A%t the known x the SL components ¢p-
tical consiants can be determined.

So at typical parameters the simple model advanced predicis

some characteristic dissipative properties of the gyrotropic SL

satisfying the long optical wavelength approximation.

We gratefully acknowledge I.V.Semchenko for his helpful

discussicn.
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SYMMETRY OF TENSORS AND OPTICAL PROPERTIES
OF DIRECTIONS IN MAGNETICAL CRYSTAIS
Girgel S.S., Demidova T.V.
Gomel State University

Syrotin and Shaskolskaya [11, Zheludev [2] have introduced
the concept of optical properties of directions (OPD) in crystails.
OPD are polarizable characteristics and birefringeces of own Plane
monochromatic waves in these directions.

We use Maxwell equations for Plane monochromatic waves and
material equations [3] for vectors of electromagnetic field E, b,
B, H to description of optical properties of crystals.

E=c"D+al, B=yH+ E, (1)

These equations describe various types of anisotropy, gyrot- .

TOpy and absorption of linear media. As for transparent media .
e=¢g" p=pt a=-gt, 2)
sign "+" means Ermit's conjugate.

According to Maxwell equations and (1) we may obtain the wave
equation {4],

Bp = (I(e7" + an na*~ 1/0®)I + 1/n(Tag - pa*I)Ip=0 (3)
where I=-p0™, p=1, n* - antisymmetrical tensor of second rank
¥hich is dual to vector of wave normal n (n?=1). Symmetry of mat-
rix # defines symmetry of OPD along n selected.

It 1is possible to choose parts in material tensors £ ! and
a. These parts answer for various optical effects.

ez + 165, a-= o +a_, (4)
where y 1is symmetrical {-tensor of second rank describing linear -
birefrigence, G - vector of magnetical gyration, characterizing
Faraday's effect. Tensor a .~ axial nonsymmetry i{-tensor of second
rank, defining natural optical activity, %o~ axial nonsymmetric
c-tensor of the second rank descz_'ibmg magnetoelectrical effect.,
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c~-tensor of the second rank describing magnetoelectrical effect.

It 1s not necessary to solve (3) for qualitative analyses of
symmetry OPD.

That 1s why ¥ may be subdivided to items and be looked for
their symmetry. BEvery item corresponds to definite optical effect.

We released research all classes of magnetical symeeiry so
that should know avallability those optical effects along diffe-
rent crystallographic directions.

For example we gave the tables of optical properties of cubic
and unaxial crystals. In tables signs "+" or "-" correspond to the
presence or the absence of the effects, which are interesting for

us.
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OPD in cubic crystals
n-arbitrary

Table 1

Classes BR

0A FE

432, 23 -

m3'm, m3m, m3m’', m'3m, 43'm', 43m,

m3', m3

43m’, m'3, m'3m’ -

43'2, 4'32, 23 -

OPD in uvnaxial crystals
ne#0; [ncl}#0

Table 2

Classes BR

0A FE

%, 4, 6, 32'm',42'2',62'2, 32', 3, & +

&/m'mm, o/m'm'm', 4/m'm'm', 4/m'mm,

A'/m'mm*, 4mm, 6mm, 3m, 4mmn',6'm2°, +

3*'m, 4/m', 6/m’, 4'/m',6', 3',6'm'2,
'3'|m1

Z2m, 4'2'm, 4'2m’, 4',4', 3', 4'22
422, 622, 32

4Am'm, 6m'm',3m*

6/mmmt?', 6/mmm, 6'/mmm', 6'/m'mm’
4/mnm1’, 4/mmm,4'/mmm', 4ummi’, 6mmt’,

3'm,Pm21',6m2, &'mm’', 3'm1’, 3m,
&/mt', 6'/m, 6'/m', 4/m1', 4'/m, &1',31°'

Tomt®, 492217, 6221', 3'2, 6'22°, F1', 41"
61, 6

4/m, 6/m, 6/mm'm',4/mm'm', &m'2', 3, 3m’
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BIARISOTROPICS OF QUASICRYSTAIS.
SYMMETRY ASPECTS,

Girgel S.S., Serdyukov A.N.
P.Skorina Gomel State University

Symmetry of physical tensor quasicrystal properties has been
discussed. Rules of selection for tensors of natural optical
activity for different classes of quasicrystal symmetry have been

determined.

Recently quasicrystal-anisotropic sclids with infracted
translational symmetry have been discovered by experiment [1].
Phere are "prohibited" axes of 5, 8, 10 and 12 fold symmetry in
them. The paper seeks to carry out symetrical analysis of
quasicrystal optical properties.

For phenomenoclogical description of macroscopic physical pro-
pertiés of guasicrystals in accordance with Neuman principle {2}
we will use the following point symmetry groups: 5, 5/2,; 5, 5m,
532, mSm, 8, 8/2, 8, 8m, 8/m, %2m, 8/mmm, 10, 10/2, 10, 1Omm,
10/m, 102m, 10/mmm, 12, t2/2, 12, 12mm, 12/m, 122m, 12/mm.

By way of example consider the linear optical properties of
quasicrystals.

It should be kept in mind that due to high symmeiry of
quasicrystals many properties characteriZed by 1-4 th rank tensors
will be uniaxial and even isotropic {3,4]. It follows from hermann
theorem [2}, according to which axis of n-fold symmetry for r<n
rank tensor would be also an axis of infinite order.

That's why symmetrical tensors of rank 2 of dielectric and
magnetic permeability in media of classes 532 and mSm would be

isotropic and in the rest classes of quasicrystals would be unia-
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xial.

By natural optical properties (NOA), characterized by
nonsymmetric pseudotensor of rank 2, quasicrystals are divided
into 5 typés. Symmetry classes 5, 8, 10, 12 are characterized by
three independend components: 11=22, 33, 21=-12. in groups 5/2,
8/2, 10/2, 12/2 are nonzero components t1=22, 33. In quasicrystals
of symmetry: 5m, Smm, 10mm, 12me NOA tensor is purely
antisymmetric: 2t=-12. in the samples of symmetiry 532 NO& 1is
isotropic. The rest point groups of quasicricrystals symmelry
prohibit NOA.

Due to freQuency dispersion physical properties depend on the
frequencies. That's why there are frequency regions of electromag-
netic radiation, where optical properties are characterized by
tensors £ and M, i.e. quasicrystal is bianisotropic medium.

Besides many quasicrystals coutain rare-easth.

Components and at low temperatures they may have magnetic
structure. In such case their physical properties should be chara-

cterized oy groups of magnetic symmetry
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On the wave normal equation
for bianisotropic media

F.I. Fedorov

Institute of Physics, Academy of Sciences, Minsk, Belarus

For plane time-harmonic electromagnetic waves Ee*, He, ¢ = w(mx/c — t)
the Maxwell equations have the form [1,3]

D=-mH=-[mH, B=mE=[m,E] (1)

Here m = nn is the refraction vector [1,2], n is the refraction index, n is the wave

normal (n? = 1), m stands for the antisymmetric tensor dual to the vector m, and
[m, H] denotes the vector product!. For bianisotropic media with the constitutive
equations

D = ¢E + aH, B=uH+ BE, (2)
it follows from (1) that
€E+(a+m)H=0, pH+ (8- M)E=0. (3)
Eliminating the magnetic field vector H we have the wave normal equation
le = (a+ M)u~ (8- m)| = 0. (4)
For arbitrary tensors €, p, a, and 3, the evaluation of the determinant (4)
results in a rather complicated expression. However, we can simplify the analysis

by eliminating the tensor p (or €) with the help of the linear transformation (4,5] of
all the vectors:

E= ﬁlElv H= /_LlHI’ m = l_"lml (5)

and the tensors

!The scalar product between vectors is denoted without any multiplication sign, by ab. The
Gaussian system of physical units is used in the paper. (Editors)
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X X
e=mep, p=mp'p, a=pap, B=mPp, =g miy.  (6)

Here p? = p, and @, = |py|u’ is the tensor adjoint to the tensor py. If yis a
symmetric and positive definite tensor then y; always exists and it has the same
properties. After such replacement we obtain from (3):

B +(a+m ) H =0, H +(f-m")E =0, (7)
Note that always

(Bm')* = g1 (8)
-1

since ji; = py (see [5])%. Also, p' = p7 ppr? = 1.
If u =1 we have from (4)

A =le—(a+ m)(B~ )| = |y + & + m? =0, (9)

where

v =¢€¢—af, n:ar)r(l——r)r(lﬂ. (10)

With the help of the covariant methods expounded in [1,3,5] we obtain

A=A0+A1+A2+A3+A4, (11)

where each term Ay is a polynomial of m of the power k:

Ao=l|, Ar=@Fk), A= (ym?+q8E),

A3=1n4+((m—7—z)r¥12)t, A4=(m¥12+7r§12). (12)

t

Here the index ; denotes the trace of a tensor. From (10) and (8) we obtain, using
the same methods [1,3,5]%:

Ao = [e] — (2aB); + (eBa): — |aB,
A = ((7a—ﬁ7) I)I(l> s Ay =A+ Bm?+ mpm,

A= (ah), (By =) ) +(Bshrad), B =(aflr— ) -7 (13

2& denotes the transpose of a matrix. (Editors)

3Here and in the following the unity matrix is omitted, so that 7Y — v means the matrix +
minus its trace multiplied by the unity matrix. Unlike in the Western tradition, here a.b denotes
the dyadic product between vectors. In the expression for Ay we have in fact the product of two
scalars. (Editors)
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p=T+37+78 - By~ 1~ (B - (BaF),),
Ag = mym ((ﬂ —a) ﬁl)t +[m,ym(G + f)m — [m,&m)(& + 8 — 4,)Bm,
A4 = m’mem — mom.mfBm.
If a = § = 0, the equations (11), (13) simplify to
m*mem + (2 x)ﬁz)t + el =0, (14)

which coincides with the covariant wave normal equation obtained in [1,3]. With the
help of the transformation inverse to that in (5), (6) (m — z7'm, e — pyleps?)
we obtain from here the corresponding equation for magneto-anisotropic media
mem.mpum + my (& — (u).) m + |ep| = 0, first deduced in [1,7] (see also [3,5]).

In the case A; # 0, Aj; # 0 the medium is nonreciprocal. If 8 = —& we have
from (13) A; = A; = 0, i.e. this condition connecting o and B is sufficient for
reciprocity in the general case [8]. Under this condition, v = ¢ + a& = 7 and we
have from (13) that

Ao = [e] + (ad), + (ca@). + |af?,
A = (a ), ((27 —y)a r’ﬁ)t . B=(a&) —7—2((c—e)ad),,

pP=TF+aTy +70+ &y — ) + 77 (GaF — (GoF):) = p, (15)

Ay = m’mem + (mam)?.

However, the condition 8 = —& is not necessary as we can see from an example
of uniaxial bianisotropic medium. For such media € = ¢ + ¢e.e and
a = apg+ a,e.e+ a, é, ,3=bo+b]e.e+b2 é, (16)

where e is the unit vector (e? = 1) along the symmetry axis. The multitude of
tensors of the shape (16) forms a commutative algebra. Its elements are given by
three numbers: a = (a9, a1, az). The law of multiplication is

aﬁ = (aO, ai, ‘7'2)(170, blv bZ) = (aobo—azbz, aob1+albo+a1b1+agbz, aob2+azbo) = ﬁa.
(17)

We have |a| = (a0 + a1)(a§ + a3), @ = (ao(a0 + a1), @ — aoa1, —az(ao + a,)), and

1 2 _
a‘l = (a'Oa ay, aZ)_l = (a'O, a2 aoal, —G’Z) . (18)

al + a} ag + a;

These relations allow us to evaluate all the expressions in (13). Denoting v =
(g09 91 gz)a ¥= (g(‘n g;’ g;)v (& +B8- ,Bt)ﬂ = (COa €1, C2) we obtain
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A; = 2Dgem, A; =em (Dlm2 + Dz(em)z) , (19)
Do = gy(by — @) + g5(bo — a0), D1 = 2g0(b2 — a2) + K,
Dg = 2g1(b2 - a,z) - K, K = gl(ag - bg) —+ gz(a1 + bl) — a1C2 — A2C1, (20)

It is easy to see that for uniaxial media the expressions (13) contain the wave normal
vector n only in the form en = cos 4, therefore the refraction index n depends only
on the angle 4 between the propagation direction and the symmetry axis. For any
direction of n orthogonal to the axis e (en = 0) the reciprocity condition holds (see
(19)). When a and 8 are independent and @ = @, § = B (az = by = 0) all the
coeflicients with the index 2 are equal to zero and also Do = Dy = Dy = A; = Ag =
0. So the condition B = —& is not necessary for reciprocity. All these conclusions
are true also when g = pg + pge.e, i.e. for any uniaxial medium.

General conditions for reciprocity of uniaxial media read Dy = Dy = D, = 0.
Since we have 8 coefficients in €, «, (or 10 if g # 1) then evidently these three
conditions can be satisfied by a wide spectrum of parameters. In particular, from
D; = D, = 0 we have (go+g1)(b2 — a2) = 0. Therefore, in addition to the conditions
B=—-adora=a& B= B, which concern only the tensors a and B, there also exist
reciprocity conditions related to the equation go + g1 = 0. These affect ¢, and €.

Evidently we can analyse any other special cases based on the general relations
(11)-(20).
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THE DETERMINATION OF OPTICAL ANISOTROPIC PARAMETERS
OF ABSORBING GYROTROPIC MEDIA
A.F.Konstantinova , E.A.Evdischenko, B.N.Grechushnikov
Institute of Crystallography, Russian Academy of Sciences,
Moscow, Russia

Anysotropic parameters such as birefringence, dichroism a--
optical activity paranmeters (gyrotropic properties) are ma:w-
characteristics of substances. In [1,2) the methods are offered of tr=
simultaneous determination of anyzotropic parameters. We develop thess
methods for the biaxial absorbing gyrotropic crystals, in which the
eigen waves are nonorthogonal (angle of nonorthogonality is 8) ar:

ones have different ellipticities (k, and k 5) - These parameters can :=

determined from measurements either éf the a21muth or of the intensi-z-
of the passed light. Here we consider only the second case. We proposs
to use measurements of the light intensity depending on the rotatio-
angle a of the investigated plate placed between arbitrary oriented
polarizers.

We have received the expression for the intensity by

multiplying the Mueller matrices of the analyzer, the investigating
plate and the polarizer:

I(ax) = M (a + b1 cos 2x + b2 sin 2a + €, cos 4o + c, sin 4a) (1)
where a, bl,z’ c1,2’ depend on values: A = an(n2 - nl)/h, & =
an(&a—1fl)/A, ellipticities k1,2 = tg 71’2 and azimuths Xy Xy =X+
(n/2-8} of eigen wave, (nz-nl), (xaifl) are birefringence and

dichroism of eigen waves respectively, d is the thickness of
investigating plate, A is the length wave of the incident light. The
function 1I(a) is given by in Figure for two cases: polarizers are
crossed ( Ii(a) ) and ones are parallel (I”(a)) It is seen that at
crossed polarizers at 6# 0 and k :f. k both minima and maxima are
different and the all dependence I* (a) is raised on abscissa axis.
For arbitrary sings of kl and k2 the Ii(a) form are always the
same. If polarizers are parallel the I”(a) form are different in
depending on sings of kl’ kz‘ .
At crossed polarizers the form of I («¢) depends on parameters o
and 71,2 whereas parameters A and § influence only at the scaie. Tie-
rifore we can determine values 6 and k1,2 from measurements - a , b i’
c at crossed polarizers. At first an nonorthogonality angle 8 is
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calculated from equation:

3

L
cos~ 26 + (a /c*) cos2

+

26 - [1-(bl/2cl)2] cos28

+[[(biL )2 - (b; )Z]Ci + 2b; b; c; - satctyza(et)® = 0, (2)
where (6°)%= (b} )% + (512, (N = (ef )2+ (cF )2,

By taking the ratio cé /cf one can determine the origin azimuth of
the plate

A

tg @y = (c] tg 20 + c;') / (c;' tg 26 - cf ) . (3)
By taking the ratio a-/c’ and (bJ')z/(ZcJ')2 we receive the systenm
oggwo equations . By solving it we obtain expressions for
ellipticities of eigén waves

2 V/(b'L)2 + q cos?e * V/(bJ‘)2 - q sin%e - 4 &

k = > (4)
1,2

V/(bl 2, cos?e + \/(b"’)2 - q sin%e + 4 ct
q

where q = sct (al + cl cos28).

It is evident that sings of kl and kz from measurement Ii(a) are
not determined.

Thus we calculated g, % and kl,z using measurements i%d) at
crossed polarizers. Then we can determine parameters A and & using

I X . it
measurements I (a) at parallel polarizers. At first from b 1/2c”
I [
b2 /2cl, a”/c” one calculates value §:

2

] i " i
(2,+2,)[a p-c (Z,Z,+R R, ) 1+P[P; (X,Z, X,Z,)+b, (Y Z,-¥,2.)]

exp(23)= £5)
n___ - I - I -
(Zl+zz)[a p-c (ZIZZ+R1R2)] p[b1 (XIZ2 Xzzl)+b2 (le2 Yzzl)]
where p = cosZar1 cos 272; R1R2= Xlxz + YlY2 + 2122;
Xi = costi cosZyi; Yi = 51n2xi cosZwi; Zi = SLnZ'ari (i=1,2).

At second from the same relations one can calculate value A:

exp(28)+1 (a"-c” cosZG)cost1 cost2 - 2c” (6)

2exp(s) (a' +c! cos26)cos2y, cos2y, - 2c’sinzy

cos A =

sin2y

1 2

In the case k1=k2=0 and 6 = 0 we obtain simple relationships
for the calculating &8 and A from (5) and (6):

exp (28) = (a'+b' +c’y/(a" -p' +c")

(7)
cosA = (a' -3c") \/ (a' +clt )‘2 - (b”}.?'

By knowing parameters & and A we can calculate dichroism @fziﬁ&)
and birefringence (nz-nl) of the investigating plate.
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Hence we can determine all optical anyzotropic parameters of the
absorbing gyrotropic crystal from measurements of 1light intensi-.
Il(a) and I”(a). Such kind of dependences may be obtained on spectrc-
photometer if one places the sample between polarizers and one mea-
sures the intensity I{(a) when turning the sample by an angle o. ¥e
built up the polarization eguipment for spectrophotometer which cor-
sists of the ©polarizer and the analyzer in special setting with
angle limbs and the same setting for investigating samples.ThéLspecia;

L

program have make for the calculating of coefficients aL, b i <
i ]

1 . . . . . s i .
and a , b i* © i and then birefringence, dichroism, ellipticities anc

the nonorthogonality angle of eliggn waves.
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Figure.Dependence of light intensity I(a) on a plate rotation angle «

1
Up - polarizers are parallel; down - polarizers are crossed.

at values: «_= 0, & =10°, k, = -0.4, k, =0.2, A =75°, & =o0.1.
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Non-collinear interaction
of electromagnetic waves in gyrotropic crystals
with rapidly rotating anisotropy

Irina N. Akhramenko and Igor V. Semchenko

Gomel State University, Physics Department, Belarus

The interaction of electromagnetic waves (in the microwave and infrared fre-
quency bands) with electric fields rapidly rotating in time and forming rotating he-
lical anisotropy in non-linear gyrotropic crystals is investigated in our research. Such
effects as selective reflection and amplification of a test signal with the frequency
and direction of polarization vector coinciding with those of the induced anisotropy
had been demonstrated in our previous works in a case of the test and modulating
waves propagating normally to the crystal surface (1,2]. Thus such crystals possess
properties characteristic to cholesteric liquid crystals (CLC). At the same time they
allow one to realize electromagnetic waves parametric interaction causing resonance
amplification (or attenuation) of the test electromagnetic wave.

The present paper is devoted to the research of test electromagnetic wave propa-
gation in a case of oblique incidence onto the crystal with rapidly rotating helicoidal
anisotropy. Such anisotropy is formed in non-linear gyrotropic crystal by two inten-
sive light waves of right-handed and left-handed circular polarizations and different
frequencies. Their wave-number difference makes a significant contribution to the
crystal gyrotropy. The induced anisotropy can be described by the effective permit-
tivity tensor

€(z,t) = U(z,t)eU ™ (2,t), (1)

Where U(z,t) is the rotation operator relatively to the z-axis (3] coinciding with the
modulating waves propagation direction, e is the local and momentary permittivity
tensor that is optically uniaxial.

Non-collinear interaction between modulating and test waves has some specific
features: according to the diffraction theory, the higher reflection orders appear
at the frequencies divisible by the Bragg’s one. Moreover, as it was mentioned in
CLC-optics publications, even in crystals with stationary spiral anisotropy the reflec-
tion character changes essentially already for the first-order diffraction: polarization
properties of the eigenmodes become complicated and bands of any polarized light
reflection appear [4].
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The solution of the first-order diffraction problem has been obtained in the
present work with the help of the Slowly Changing Amplitudes method under the
two-waves approximation. The electric field vector is assumed in the diffraction
theory to be expressed as a sum of the #— and o—components:

Eq = (Eoo0 + Eorm) expli( ko(wo)r — wot)l, (2)

which are parallel and orthogonal to the incidence plane, respectively. Taking into
account the problem geometry, the Bragg’s condition k; = ko + 7 acquires the form

wosin g + (wo — 2A0) sin §; = 2AKev/e. (3)

Here k; is the propagation vector of the reflected wave, 7 is the reciprocal lattice
vector of the induced structure, AQ and AK are the modulating waves frequency
and wavenumbers differences, c is the light velocity (the angles 6, and 6; are shown
in Figure 1)!

Figure 1. The geometry of the problem.

The amplitudes of the o~ and w-components are the solutions of the differential
equations system which may be represented as

EOa EOo

d E01r A EOﬂ'

— =A .

dz Ela Elo’ (4)
E17r El'x

The matrix A is determined by the crystal and interacting waves parameters as well
as by the interaction geometry, the subindices 1 and 0 mark the incident and reflected

1€ = ¢o + 20E2, where 8 is the coefficient of electro-optical interaction. (Editors)
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waves, correspondingly. Solution of dispersion equation which results from solvabil-
ity condition of the system (4) gives an opportunity to determine the wavenumbers
of the incident and reflected waves for the case of the test wave propagation obliquely
to the induced helix anisotropy axis. The results obtained were used to solve the
boundary problem. Boundary conditions were selected in analogy with the reflecting
hologram problems:

Ei(L)=0, Eu(L)=0, Eo,(0)+ Eon(0) = E, (5)

where L is the crystal thickness.

Boundary problem solution has been obtained by numerical methods using a
personal computer. It has been demonstrated that reflection of arbitrary polarized
waves is possible in a case of oblique incidence of the test wave on the surface of
a crystal with induced helical rotating anisotropy. Simultaneous amplification (or
attenuation) of both the transformed and reflected waves is possible in this case, in
the contrary to that of the normal incidence.
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Microwave effective permeability
of conductive helices

V.N. Semenenko and D.E. Ryabov

Scientific Centre for Applied Problems in Electrodynamics, Moscow, Russia

Interest in bianisotropic materials has been recently widely increased since they
offer some novel promising applications not only in optical technology, but in mi-
crowave technology and radio engineering, too. There are a lot of theoretical articles
dealing with various bianisotropic media [1-2]. Nevertheless there are only few works
in the field of the experimental investigation of these materials in the microwave re-
gion, especially there are no experimental studies of influence of individual inclusions
on the properties of such materials. The main purpose of this work was to investigate
effective permeability of wire helices in the region of centimeter wavelengths.

A resonator method with transmittance measurement is used to determine the
effective complex permeability of wire helices. We used a cylindrical resonator with
a high Q-factor and with a possibility to vary its resonance frequency in the region
from 2.8 GHz to 6 GHz in the experiment. The samples under investigation were
helices with characteristic sizes d, I < A (d is the helix diameter, [ stands for the
length of the helix, and X is the wavelength). These samples were placed into the
maximum of magnetic field amplitude (high Q—factor Hyy; mode was utilized) at the
axis of the resonator. The axis of the helix was parallel to the magnetic field vector.
In order to calculate the effective complex permeability of a sample, we measured
the resonance frequencies and Q-factors of empty (fo, Qo ) and loaded (f;, @, )
resonators. After that we calculated the effective magnetic moment of a sample
using the perturbation technique [3] and then we carried out the normalization
of the data obtained. As a factor of normalization we took the total volume of the
sample (V = nd?l/4). Formulas for calculation of the effective complex permeability
f=u' — ju" were as follows:

Lo fi
h fo

S 2(1 1
P’*E a_-Q_O,

where A is the form-factor. This value equals to the ratio of the energy in the volume
of the sample divided by the energy in the whole resonator. The results obtained
were tested by measuring a sample of iron powder which had the same shape. The

p=1+
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permeability of this sample measured in resonator was in good agreement with
results obtained by another experimental method.

It is worth noting that the chirality factor had no infiuence on measurements
of 4 of helices, because in this case the electric fleld at the axis of the resonator
equals zero, the electric field in the volume of the sample was negligible and thus
the chirality factor of the helix did not perturb the electromagnetic field in resonator
4.

The helices under investigation were 3 mm in diameter and had the pitch equal
to 1 mm. These samples were made by use of wires with various conductances and
thicknesses. The results of measurement of effective values of i = p’ — ju” for three
different samples are presented in Fig. 1-3. The dependence of u' and p” on the
frequency has the resonance character. The real part of the permeability may take on
values both greater than unity (4’ > 1 — the paramagnetic effect) and smaller than
unity (¢’ < 1 — the diamagnetic effect). The losses reach the maximum value at
the resonance: y” = max, and 4’ is zero. It is typically that the predicted resonance
frequency is in disagreement with the lengthwise resonance which one should obtain
at a particular wire’s length of helix, as 2% L/Ay =~ 0.6 — 0.7 {where L is the wire’s
length, and Aq is the resonant wavelength).

The analysis of the presented curves shows that when the resistance of the wire
increases then the resonance values of p’ and p” decrease, but at the same time
the resonance frequency band width Af becomes wider. As a result the product
pr o Af 1s approximately constant.

Thus, it is shown that conductive helices with certain sizes d,! < A have a strong
resonance in microwave region. They have large magnetic losses in the resonance
region and, in addition, the helices under investigation have paramagnetic properties
in some frequency bands.
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